, 12:298 | Cite as

Shifts in N and P Budgets of Heathland Ecosystems: Effects of Management and Atmospheric Inputs

  • Werner HärdtleEmail author
  • Goddert von Oheimb
  • Anna-Katharina Gerke
  • Marion Niemeyer
  • Thomas Niemeyer
  • Thorsten Assmann
  • Claudia Drees
  • Andrea Matern
  • Hartmut Meyer


In the present study we analyzed the combined effects of management (grazing, mowing, prescribed burning, sod-cutting) and atmospheric deposition on N and P budgets of heathland ecosystems (Lüneburger Heide nature reserve; N Germany). We hypothesize that management measures such as grazing and mowing can accelerate a deposition-induced imbalance of N and P pools as a result of a disproportionally high output of P. We analyzed management and deposition affected input–output flows of N and P and related them to changes in the nutritional status of Calluna vulgaris 5 years after treatment application. We found that grazing and mowing caused the highest net loss of P due to high P concentrations in the aboveground biomass. In contrast, prescribed burning only slightly affected P pools, as P remained in the system due to ash deposition. Management-mediated effects on N and P pools were mirrored in the nutritional status of Calluna vulgaris: at the grazed and mown sites, the P content of current season’s shoots significantly decreased within 5 years after treatments, whereas the N content remained unchanged. We conclude that grazing and mowing can accelerate declining availability of P and, thus, accelerate a deposition-induced shift from N- to P-limited plant growth in the medium term. In the face of ongoing atmospheric N loads management schemes need to combine high- and low-intensity measures to maintain both a diverse structure and balanced nutrient budgets in the long term.


Calluna vulgaris grazing leaching Molinia caerulea mowing N:P ratio nutrient limitation prescribed burning sod-cutting 


  1. Aerts R. 1993. Biomass and nutrient dynamics of dominant plant species from heathlands. Geobotany 20:51–84.Google Scholar
  2. Aerts R, Boot RGA, van der Aart PJM. 1991. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87:551–559.CrossRefGoogle Scholar
  3. Alonso I, Hartley SE, Thurlow M. 2001. Competition between heather and grasses on Scottish moorlands: interacting effects of nutrient enrichment and grazing regime. J Veg Sci 12:249–260.CrossRefGoogle Scholar
  4. Armstrong HM, Gordon IJ, Hutchings NJ, Illius AW, Milne JA, Sibbald AR. 1997. A model of the grazing of hill vegetation by sheep in the UK.2. The prediction of offtake by sheep. J Appl Ecol 34:186–207.CrossRefGoogle Scholar
  5. Berendse F. 1990. Organic-matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J Ecol 78:413–427.CrossRefGoogle Scholar
  6. Bobbink R, Heil GW, Raessen M. 1992. Atmospheric deposition and canopy exchange processes in heathland ecosystems. Environ Pollut 75:29–37.PubMedCrossRefGoogle Scholar
  7. Bobbink R, Hornung M, Roelofs JGM. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738.CrossRefGoogle Scholar
  8. Bobbink R, Ashmore M, Braun S, Fluckiger W, Van den Wyngaert IJJ. 2003. Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. Achermann B, Bobbink R, Eds. Empirical critical loads for nitrogen. Swiss Agency for the Environment, Forest and Landscape: Environmental Documentation No. 164. pp 43–170Google Scholar
  9. Brady NC, Weil RR. 2001. The nature and properties of soils. London: Prentice-Hall. 960 pGoogle Scholar
  10. Brys R, Jacquemyn H, De Blust G. 2005. Fire increases aboveground biomass, seed production and recruitment success of Molinia caerulea in dry heathland. Acta Oecol 28:299–305.CrossRefGoogle Scholar
  11. Calvo L, Alonso I, Fernandez AJ, De Luis E. 2005. Short-term study of effects of fertilisation and cutting treatments on the vegetation dynamics of mountain heathlands in Spain. Plant Ecol 179:181–191.CrossRefGoogle Scholar
  12. Diemont WH. 1996. Survival of Dutch heathlands. IBN Scientific Contribution 1. Wageningen, The Netherlands: IBN-DLOGoogle Scholar
  13. Dierssen K. 1996. Vegetation Nordeuropas. Stuttgart: Ulmer. p 838.Google Scholar
  14. Dise NB, Stevens CJ. 2005. Nitrogen deposition and reduction of terrestrial biodiversity: Evidence from temperate grasslands. Sci China C Life Sci 48:720–728.PubMedGoogle Scholar
  15. Dorland E, Bobbink R, Messelink JH, Verhoeven JTA. 2003. Soil ammonium accumulation after sod cutting hampers the restoration of degraded wet heathlands. J Appl Ecol 40:804–814.CrossRefGoogle Scholar
  16. Fottner S, Härdtle W, Niemeyer M, Niemeyer T, von Oheimb G, Meyer H, Mockenhaupt M. 2007. Impact of sheep grazing on nutrient budgets of dry heathlands. Appl Veg Sci 10:391–398.CrossRefGoogle Scholar
  17. Galloway JN, F. Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.CrossRefGoogle Scholar
  18. Gauger T, Köble R, Anshelm F. 2000. Kritische Luftschadstoff-Konzentrationen und Eintragsraten sowie ihre Überschreitung für Wald und Agrarökosysteme sowie naturnahe waldfreie Ökosysteme. Studie Umweltbundesamt Berlin, Bericht No. 29785079, Berlin. pp 1–140Google Scholar
  19. Genney DR, Alexander IJ, Hartley SE. 2002. Soil organic matter distribution and below-ground competition between Calluna vulgaris and Nardus stricta. Funct Ecol 16:664–670.CrossRefGoogle Scholar
  20. Grant SA, Armstrong HM. 1993. Grazing ecology and the conservation of heather moorland: the development of models as aids to management. Biodivers Conserv 2:79–94.CrossRefGoogle Scholar
  21. Grant SA, Hunter RF. 1966. The effects of frequency and season of clipping on the morphology productivity and chemical composition of Calluna vulgaris. L. Hull. New Phytol 65:125–133.CrossRefGoogle Scholar
  22. Grant SA, Torvell L, Common TG, Sim EM, Small JL. 1996. Controlled grazing studies on Molinia grassland: effects of different seasonal patterns and levels of defoliation on Molinia growth and responses of swards to controlled grazing by cattle. J Appl Ecol 33:1267–1280.CrossRefGoogle Scholar
  23. Grasshoff H, Ehrhardt M, Kremling K, Eds. 2002. Methods of seawater analysis. Weinheim: Wiley-VHC.Google Scholar
  24. Grimoldi AA, Kavanova M, Lattanzi FA, Schnyder H. 2005. Phosphorus nutrition-mediated effects of arbuscular mycorrhiza on leaf morphology and carbon allocation in perennial ryegrass. New Phytol 168:435–444.PubMedCrossRefGoogle Scholar
  25. Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266.CrossRefGoogle Scholar
  26. Güsewell S, Koerselman W, Verhoeven JTA. 2003. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384.CrossRefGoogle Scholar
  27. Härdtle W, Niemeyer M, Niemeyer T, Assmann T, Fottner S. 2006. Can management compensate for atmospheric nutrient deposition in heathland ecosystems? J Appl Ecol 43:759–769.CrossRefGoogle Scholar
  28. Koerselman W, Bakker SA, Blom M. 1990. Nitrogen, phosphorus and potassium budgets for two small fens surrounded by heavily fertilized pastures. J Ecol 78:428–442.CrossRefGoogle Scholar
  29. Lamble KJ, Hill SJ. 1998. Microwave digestion procedures for environmental matrices. Analyst 123:103–133.CrossRefGoogle Scholar
  30. Lavelle P. 2000. Ecological challenges for soil science. Soil Sci 165:73–86.CrossRefGoogle Scholar
  31. Mohamed A., Härdtle W, Jirjahn B, Niemeyer T, von Oheimb G. 2007. Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecol 189:279–289.CrossRefGoogle Scholar
  32. Moss R, Welch D, Rothery P. 1981. Effects of grazing by mountain hares and red deer on the production and chemical composition of heather. J Appl Ecol 18:487–496.CrossRefGoogle Scholar
  33. Nielsen KE, Hansen B, Ladekarl UL, Nørnberg P. 2000. Effects of N-deposition on ion trapping by B-horizons of Danish heathlands. Plant Soil 223:265–276.CrossRefGoogle Scholar
  34. Niemeyer T, Niemeyer M, Mohamed A, Fottner S, Härdtle W. 2005. Impact of prescribed burning on the nutrient balance of heathlands with particular reference to nitrogen and phosphorus. Appl Veg Sci 8:183–192.CrossRefGoogle Scholar
  35. Niemeyer M, Niemeyer T, Fottner S, Härdtle W, Mohamed A. 2007. Impact of sod-cutting and choppering on nutrient budgets of dry heathlands. Biol Conserv 134:344–353.CrossRefGoogle Scholar
  36. Nilsen LS, Johansen L, Velle LG. 2005. Early stages of Calluna vulgaris regeneration after burning of coastal heath in central Norway. Appl Veg Sci 8:57–64.CrossRefGoogle Scholar
  37. Olde Venterink H, Pieterse NM, Belgers JDM, Wassen MJ, de Ruiter OD. 2002. N, P and K budgets along nutrient availability and productivity gradients in wetlands. Ecol Appl 12:1010–1026.CrossRefGoogle Scholar
  38. Orr RJ, Penning PD, Parsons AJ, Champion RA. 1995. Herbage intake and N excretion by sheep grazing monocultures or a mixture of grass and white clover. Grass Forage Sci 50:31–40.CrossRefGoogle Scholar
  39. Owens LB, Van Keuren RW, Edwards WM. 2003. Non-nitrogen nutrient inputs and outputs for fertilized pastures in silt loam soils in four small Ohio watersheds. Agric Ecosyst Environ 97:117–130.CrossRefGoogle Scholar
  40. Power SA, Barker CG, Allchin EA, Ashmore MR, Bell JNB. 2001. Habitat management: a tool to modify ecosystem impacts of nitrogen deposition? ScientificWorldJournal 1:714–721.PubMedGoogle Scholar
  41. Power SA, Green ER, Barker CG, Bell JNB, Ashmore MR. 2006. Ecosystem recovery: heathland response to a reduction in nitrogen deposition. Glob Chang Biol 12:1241–1252.CrossRefGoogle Scholar
  42. Roem WJ, Klees H, Berendse F. 2002. Effects of nutrient addition and acidification on plant species diversity and seed germination in heathland. J Appl Ecol 39:937–948.CrossRefGoogle Scholar
  43. Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M 2004. Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought. Ecosystems 7:638–649.CrossRefGoogle Scholar
  44. Sokolovski SG, Meharg AA, Maathuis FJM. 2002. Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae. New Phytol 155:525–530.CrossRefGoogle Scholar
  45. Terry AC, Ashmore MR, Power SA, Allchin EA, Heil GW. 2004. Modelling the impacts of atmospheric nitrogen deposition on Calluna-dominated ecosystems in the UK. J Appl Ecol 41:897–909.CrossRefGoogle Scholar
  46. Tilman D. 1985. The resource-ratio hypothesis of plant succession. Am Nat 125:827–852.CrossRefGoogle Scholar
  47. van Diggelen R, Marrs RH. (2003). Restoring plant communities – introduction. Appl Veg Sci 6:106–110CrossRefGoogle Scholar
  48. Vare H, Ohtonen R, Mikkola K. 1996. The effect and extent of heavy grazing by reindeer in oligotrophic pine heaths in northeastern Fennoscandia. Ecography 19:245–253.Google Scholar
  49. Verhoeven JTA, Koerselman W, Meuleman AFM. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol Evol 11:494–497.CrossRefGoogle Scholar
  50. Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ. 2007. Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems 10:1069–1083.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Werner Härdtle
    • 1
    Email author
  • Goddert von Oheimb
    • 1
  • Anna-Katharina Gerke
    • 1
  • Marion Niemeyer
    • 1
  • Thomas Niemeyer
    • 1
  • Thorsten Assmann
    • 1
  • Claudia Drees
    • 1
  • Andrea Matern
    • 1
  • Hartmut Meyer
    • 1
  1. 1.Institute of Ecology and Environmental ChemistryUniversity of LüneburgLüneburgGermany

Personalised recommendations