Ecosystems

, Volume 12, Issue 2, pp 179–190 | Cite as

Hemlock Declines Rapidly with Hemlock Woolly Adelgid Infestation: Impacts on the Carbon Cycle of Southern Appalachian Forests

  • April E. Nuckolls
  • Nina Wurzburger
  • Chelcy R. Ford
  • Ronald L. Hendrick
  • James M. Vose
  • Brian D. Kloeppel
Article

Abstract

The recent infestation of southern Appalachian eastern hemlock stands by hemlock woolly adelgid (HWA) is expected to have dramatic and lasting effects on forest structure and function. We studied the short-term changes to the carbon cycle in a mixed stand of hemlock and hardwoods, where hemlock was declining due to either girdling or HWA infestation. We expected that hemlock would decline more rapidly from girdling than from HWA infestation. Unexpectedly, in response to both girdling and HWA infestation, hemlock basal area increment (BAI) reduced substantially compared to reference hardwoods in 3 years. This decline was concurrent with moderate increases in the BAI of co-occurring hardwoods. Although the girdling treatment resulted in an initial pulse of hemlock needle inputs, cumulative litter inputs and O horizon mass did not differ between treatments over the study period. Following girdling and HWA infestation, very fine root biomass declined by 20–40% in 2 years, which suggests hemlock root mortality in the girdling treatment, and a reduction in hemlock root production in the HWA treatment. Soil CO2 efflux (Esoil) declined by approximately 20% in 1 year after both girdling and HWA infestation, even after accounting for the intra-annual variability of soil temperature and moisture. The reduction in Esoil and the concurrent declines in BAI and standing very fine root biomass suggest rapid declines in hemlock productivity from HWA infestation. The accelerated inputs of detritus resulting from hemlock mortality are likely to influence carbon and nutrient fluxes, and dictate future patterns of species regeneration in these forest ecosystems.

Keywords

carbon cycling eastern hemlock hemlock woolly adelgid litter fall O horizon root biomass soil respiration southern Appalachians 

References

  1. Binkley D, Stape JL, Takahashi EN, Ryan MG. 2006. Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia 148: 447–54. doi:10.1007/s00442-006-0383-6 PubMedCrossRefGoogle Scholar
  2. Boettcher SE, Kalisz PJ. 1990. Single-tree influence on soil properties in the mountains of eastern Kentucky. Ecology 71: 1365–72CrossRefGoogle Scholar
  3. Bond-Lamberty B, Wang C, Gower ST. 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Chang Biol 10: 1756–66. doi:10.1111/j.1365-2486.2004.00816.x CrossRefGoogle Scholar
  4. Busing RT, Clebsch EEC, White PS. 1993. Biomass and production of southern Appalachian cove forests reexamined. Can J For Res 23: 760–5. doi:10.1139/cjfr-23-4-760 CrossRefGoogle Scholar
  5. Campbell JL, Gower ST. 2000. Detritus production and soil N transformations in old-growth eastern hemlock and sugar maple stands. Ecosystems 3: 185–92. doi:10.1007/s100210000018 CrossRefGoogle Scholar
  6. Catovsky S, Holbrook NM, Bazzaz FA. 2002. Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species. Can J For Res 32: 295–309. doi:10.1139/X01-199 CrossRefGoogle Scholar
  7. Cattelino PJ, Becker PJ, Fuller LG. 1986. Construction and installation of homemade dendrometer bands. North J Appl For 3: 73–5Google Scholar
  8. Cobb RC, Orwig DA, Currie S. 2006. Decomposition of green foliage in eastern hemlock forests of southern New England impacted by hemlock woolly adelgid infestations. Can J For Res 36: 1331–41. doi:10.1139/X06-012 CrossRefGoogle Scholar
  9. Day FP, Monk CD. 1977. Net primary production and phenology on a southern Appalachian watershed. Am J Bot 64: 1117–25CrossRefGoogle Scholar
  10. Dowdy S, Wearden S. 1991. The analysis of variance model. In: Barnett V, Bradley RA, Hunter JS, Kadane JB, Kendall DG, Smith AFM, Stigler SM, Tuegles JL, Watson GS (Eds.), Statistics for research. John Wiley & Sons, New York, pp. 339–67Google Scholar
  11. Ekberg A, Buchmann N, Gleixner G. 2007. Rhizospheric influence on soil respiration and decomposition in a temperate Norway spruce stand. Soil Biol Biochem 39: 2103–10. doi:10.1016/j.soilbio.2007.03.024 CrossRefGoogle Scholar
  12. Elliott KJ, Vose JM, Swank WT, Bolstad PV. 1999. Long-term patterns in vegetation-site relationships in a southern Appalachian forest. J Torrey Bot Soc 126: 320–34CrossRefGoogle Scholar
  13. Elliott WM, Elliott NB, Wyman RL. 1993. Relative effect of litter and forest type on rate of decomposition. Am Midl Nat 129: 87–95CrossRefGoogle Scholar
  14. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Holle BV, Webster JR. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 9: 479–86. doi:10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2 CrossRefGoogle Scholar
  15. Eschtruth AK, Cleavitt NL, Battles JJ, Evans RA, Fahey TJ. 2006. Vegetation dynamics in declining eastern hemlock stands: 9 years of forest response to hemlock woolly adelgid infestation. Can J For Res 36: 1435–50. doi:10.1139/X06-050 CrossRefGoogle Scholar
  16. Ford CR, Vose JM. 2007. Tsuga canadensis (L.) Carr. mortality will impact hydrologic processes in southern Appalachian forest ecosystems. Ecol Appl 17: 1156–67. doi:10.1890/06-0027 PubMedCrossRefGoogle Scholar
  17. Fritts HC. 1976. Tree rings and climate. Academic Press, LondonGoogle Scholar
  18. Harmon ME, Lajtha K. 1999. Analysis of detritus and organic horizons for mineral and organic constituents. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (Eds.), Standard soil methods for long-term ecological research. Oxford University Press, New York, pp. 143–65Google Scholar
  19. Hendrick RL, Pregitzer KS. 1993. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can J For Res 23: 2507–20. doi:10.1139/cjfr-23-12-2507 CrossRefGoogle Scholar
  20. Jenkins JC, Aber JD, Canham CD. 1999. Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Can J For Res 29: 630–45. doi:10.1139/cjfr-29-5-630 CrossRefGoogle Scholar
  21. Jones R, Mitchell RJ, Stevens G, Pecot SD. 2003. Controls of fine root dynamics across a gradient of gap sizes in a pine woodland. Oecologia 134: 132–43. doi:10.1007/s00442-002-1098-y PubMedCrossRefGoogle Scholar
  22. Joslin JD, Wolfe MH, Hanson PJ. 2001. Factors controlling the timing of root elongation intensity in a mature upland oak stand. Plant Soil 228: 201–12. doi:10.1023/A:1004866705021 CrossRefGoogle Scholar
  23. Keane RE, Austin M, Field C, Huth A, Lexer MJ, Peters D, Solomon A, Wyckoff P. 2001. Tree mortality in gap models: application to climate change. Clim Change 51: 509–40. doi:10.1023/A:1012539409854 CrossRefGoogle Scholar
  24. Kelty MJ. 1989. Productivity of New England hemlock/hardwood stands as affected by species composition and canopy structure. For Ecol Manage 28: 237–57. doi:10.1016/0378-1127(89)90006-6 CrossRefGoogle Scholar
  25. Kizlinski ML, Orwig DA, Cobb RC, Foster DR. 2002. Direct and indirect ecosystem consequences of an invasive pest on forests dominated by eastern hemlock. J Biogeogr 29: 1489–503. doi:10.1046/j.1365-2699.2002.00766.x CrossRefGoogle Scholar
  26. Liebhold AM, Macdonald WL, Bergdahl D, Mastro VC. 1995. Invasion by exotic forest pests: a threat to forest ecosystems. For Sci Monogr 30: 1–49Google Scholar
  27. McClure MS. 1989. Evidence of a polymorphic life cycle in the hemlock woolly adelgid, Adelges tsugae (Homoptera: Adelgidae). Ann Entomol Soc Am 82: 50–4Google Scholar
  28. McClure MS. 1991. Density-dependent feedback and population cycles in Adelges tsugae (Homoptera: Adelgidae) on Tsuga canadensis. Environ Entomol 20: 258–64Google Scholar
  29. McClure MS, Cheah CAS-J. 1999. Reshaping the ecology of invading populations of hemlock woolly adelgid, Adelges tsugae (Homoptera: Adelgidae), in eastern North America. Biol Invasions 1: 247–54. doi:10.1023/A:1010051516406 CrossRefGoogle Scholar
  30. Nilsen ET, Clinton BD, Lei TT, Miller OK, Semones SW, Walker JF. 2001. Does Rhododendron maximum L. (Ericaceae) reduce the availability of resources above and belowground for canopy tree seedlings? Am Midl Nat 145: 325–43CrossRefGoogle Scholar
  31. Nuckolls AE. 2007. The effects of hemlock woolly adelgid (Adelges tsugae) damage on short-term cycling in southern Appalachian eastern hemlock (Tsuga canadensis) stands, MS thesis, University of Georgia, Athens GA. p 70Google Scholar
  32. Orwig DA, Foster DR. 1998. Forest response to the introduced hemlock woolly adelgid in southern New England, USA. J Torrey Bot Soc 125: 60–73CrossRefGoogle Scholar
  33. Schroeer AE, Hendrick RL, Harrington TB. 1999. Root, ground cover, and litterfall dynamics within canopy gaps in a slash pine (Pinus elliottii Engelm.) dominated forest. Ecoscience 6: 548–55Google Scholar
  34. Scott-Denton LE, Rosenstiel TN, Monson RK. 2006. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Chang Biol 12: 205–16. doi:10.1111/j.1365-2486.2005.01064.x CrossRefGoogle Scholar
  35. Skinner M, Parker BL, Gouli S, Ashikaga T. 2003. Regional responses of hemlock woolly adelgid (Homoptera: Adelgidae) to low temperatures. Environ Entomol 32: 523–8CrossRefGoogle Scholar
  36. Stadler B, Müller T, Orwig D, Cobb R. 2005. Hemlock woolly adelgid in new england forests: canopy impacts transforming ecosystem processes and landscapes. Ecosystems 8: 233–47. doi:10.1007/s10021-003-0092-5 CrossRefGoogle Scholar
  37. Stadler B, Müller T, Orwig D. 2006. The ecology of energy and nutrient fluxes in hemlock forests invaded by hemlock woolly adelgid. Ecology 87: 1792–804. doi:10.1890/0012-9658(2006)87[1792:TEOEAN]2.0.CO;2 PubMedCrossRefGoogle Scholar
  38. Swift LW, Cunningham GB, Douglass JE. 1988. Climate and hydrology. In: Swank WT, Crossley DA (Eds.), Ecological studies, vol. 66: forest hydrology and ecology at Coweeta. Springer-Verlag, New York, pp. 35–55Google Scholar
  39. Tingley MW, Orwig DA, Field R, Motzkin G. 2002. Avian response to removal of a forest dominant: consequences of hemlock woolly adelgid infestations. J Biogeogr 29: 1505–16. doi:10.1046/j.1365-2699.2002.00789.x CrossRefGoogle Scholar
  40. USDA FIA. 2005. 3.0 phase 3 field guide, section 12. Crowns: measurements and sampling. http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2006/p3_3-0_sec12_10_2005.pdf. Accessed on September 5, 2008
  41. Whitney GG. 1982. A demographic analysis of the leaves of open and shade grown Pinus strobus L. and Tsuga canadensis (L.) Carr. New Phytol 90: 447–53CrossRefGoogle Scholar
  42. Wullschleger SD, Jackson RB, Currie WS, Friend AD, Luo Y, Mouillot F, Pan Y, Shao G. 2001. Below-ground processes in gap models for simulating forest response to global change. Clim Change 51: 449–73. doi:10.1023/A:1012570821241 CrossRefGoogle Scholar
  43. Wurzburger N, Hendrick RL. 2007. Rhododendron thickets alter N cycling and soil extracellular enzyme activities in southern Appalachian hardwood forests. Pedobiologia 50: 563–76. doi:10.1016/j.pedobi.2006.10.001 CrossRefGoogle Scholar
  44. Yorks TE, Leopold DJ, Raynal DJ. 2003. Effects of Tsuga canadensis mortality on soil water chemistry and understory vegetation: possible consequences of an invasive insect herbivore. Can J For Res 33: 1525–37. doi:10.1139/X03-073 CrossRefGoogle Scholar
  45. Young RF, Shields KS, Berlyn GP. 1995. Hemlock woolly adelgid (Homoptera: Adelgidae): stylet bundle insertion and feeding sites. Ann Entomol Soc Am 88: 827–35Google Scholar

Copyright information

© GovernmentEmployee: United States Department of Agriculture, Forest Service 2008

Authors and Affiliations

  • April E. Nuckolls
    • 1
  • Nina Wurzburger
    • 2
  • Chelcy R. Ford
    • 3
  • Ronald L. Hendrick
    • 1
  • James M. Vose
    • 3
  • Brian D. Kloeppel
    • 4
  1. 1.Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensUSA
  2. 2.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  3. 3.Coweeta Hydrologic LaboratoryUSDA Forest Service SRSOttoUSA
  4. 4.Department of Geosciences and Natural ResourcesWestern Carolina UniversityCullowheeUSA

Personalised recommendations