, Volume 12, Issue 6, pp 873–887 | Cite as

Controls on the Carbon Balance of Tropical Peatlands

  • Takashi HiranoEmail author
  • Jyrki Jauhiainen
  • Takashi Inoue
  • Hidenori Takahashi


The carbon balance of tropical peatlands was investigated using measurements of gaseous fluxes of carbon dioxide (CO2) and methane (CH4) at several land-use types, including nondrained forest (NDF), drained forest (DF), drained regenerating forest (DRF) after clear cutting and agricultural land (AL) in Central Kalimantan, Indonesia. Soil greenhouse gas fluxes depended on land-use, water level (WL), microtopography, temperature and vegetation physiology, among which WL was the strongest driver. All sites were CH4 sources on an annual basis and the emissions were higher in sites providing fresh litter deposition and water logged conditions. Soil CO2 flux increased exponentially with soil temperature (T s) even within an amplitude of 4–5°C. In the NDF soil CO2 flux sharply decreased when WLs rose above −0.2 and 0.1 m for hollows and hummocks, respectively. The sharp decrease suggests that the contribution of surface soil respiration (RS) to total soil CO2 flux is large. In the DF soil CO2 flux increased as WL decreased below −0.7 m probably because the fast aerobic decomposition continued in lower peat. Such an increase in CO2 flux at low WLs was also found at the stand level of the DF. Soil CO2 flux showed diurnal variation with a peak in the daytime, which would be caused by the circadian rhythm of root respiration. Among the land-use types, annual soil CO2 flux was the largest in the DRF and the smallest in the AL. Overall, the global warming potential (GWP) of CO2 emissions in these land-use types was much larger than that of CH4 fluxes.


carbon dioxide decomposition drainage ground water level hollow hummock land use methane peat swamp forest soil temperature 



This work was supported by Academy of Finland (KEYTROP), EU INCO-DC programs (STRAPEAT and RESTORPEAT), JSPS Core University Program and Grant-in-Aid for Scientific Research (Nos. 13375011, 15255001, and 18403001) from MEXT Japan. Special thanks go to CIMTROP and the hard working staff in this organization. The authors are also grateful to Dr. Josep Canadell for helpful comments and suggestions.


  1. Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H. 2006. Differences in soil respiration between different tropical ecosystems. Appl Soil Ecol 34: 258–65CrossRefGoogle Scholar
  2. Bergman I, Svensson BH, Nilsson M. 1998. Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol Biochem 30(6): 729–41CrossRefGoogle Scholar
  3. Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR. 2002. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131: 113–24CrossRefGoogle Scholar
  4. Canadell JG, Pataki DE, Gifford R, Houghton RA, Luo Y, Raupach MR, Smith P, Steffen W. 2007. Saturation of the terrestrial carbon sink. In: Canadell JG, Pataki D, Pitelka L, Eds. Terrestrial ecosystems in a changing world. The IGBP series. Berlin, Heidelberg: Springer-Verlag. p 59–78Google Scholar
  5. Carrara A, Kowalski AS, Neirynck J, Janssens IA, Yuste JC, Ceulemans R. 2003. Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agr Forest Meteorol 119: 209–27CrossRefGoogle Scholar
  6. Conrad R. 1989. Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS, Eds. Exchange of trace gases between terrestrial ecosystems and the atmosphere. New York: John Wiley. p 39–58Google Scholar
  7. Ekblad A, Högberg P. 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127: 305–8CrossRefGoogle Scholar
  8. Falge E, Baldocchi DD, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger W, Pielegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S. 2001. Gap filling strategies for long term energy flux data sets. Agr Forest Meteorol 107: 71–7CrossRefGoogle Scholar
  9. Furukawa Y, Inubushi K, Ali M, Itang AM, Tsuruta H. 2005. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutr Cycl Agroecosys 71: 81–91CrossRefGoogle Scholar
  10. Goulden ML, Miller SD, da Rocha HR, Menton MC, de Freitas HC, Figueira AMS, de Sousa CAD. 2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14: S42–54CrossRefGoogle Scholar
  11. Hadi A, Inubushi K, Furukawa Y, Purnomo E, Rasmadi M, Tsuruta H. 2005. Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutr Cycl Agroecosys 71: 73–80CrossRefGoogle Scholar
  12. Hatano R, Tomoaki M, Untung D, Limin SH, Syaiful A. 2004. Impact of agriculture and wildfire on CO2, CH4 and N2O emissions from tropical peat soil in Central Kalimantan, Indonesia. Necessity of establishment of inventory on carbon cycling in tropical peatland ecosystems for sustainable agroproduction and environmental conservation. Report number 13574012. Field Science Center for Northern Biosphere, Hokkaido University, Sapporo. p 1–14Google Scholar
  13. Hirano T, Segah H, Limin S, June T, Tuah SJ, Kusin K, Hirata R, Osaki M. 2004. Energy balance of a tropical peat swamp forest in Central Kalimantan, Indonesia. Phyton 40: 67–71Google Scholar
  14. Hirano T, Segah H, Harada T, Limin S, June T, Hirata R, Osaki M. 2007. Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob Chang Biol 13: 412–25 doi: 10.1111/j.1365–2486.2006.01301.x CrossRefGoogle Scholar
  15. Inubushi K, Furukawa Y, Hadi A, Purnomo E, Tsuruta H. 2003. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52: 603–8PubMedCrossRefGoogle Scholar
  16. IPCC. 2001. Climate change 2001: The scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, Eds. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, p 881Google Scholar
  17. IPCC. 2007. Climate change 2007: The physical science basis. In: Solomon S, Qin D, Manning Z, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, p 996Google Scholar
  18. Ishida T, Suzuki S, Nagano T, Osawa K, Yoshino K, Fukumura K, Nuyim T. 2001. CO2 emission rate from a primary peat swamp forest ecosystem in Thailand. Environ Control Biol 39(4): 305–12Google Scholar
  19. Jali D. 2004. Nitrogen mineralization in the tropical peat swamps. In: Päivänen J, Ed. Proceedings of the 12th International Peat Congress, Tampere 6–11.6.2004. p 644–52Google Scholar
  20. Janssens IA, Dore S, Epron D, Lankreijer H, Buchmann N, Longdoz B, Brossaud J, Montagnani L. 2003. Climatic influences on seasonal and spatial differences in soil CO2 efflux. In: Valentini E, Ed. Fluxes of carbon, water and energy of European forests. Berlin Heidelberg: Springer-Verlag. p 233–53Google Scholar
  21. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guđmundsson J, Minerbi S, Berbigier P, Ibron A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7: 269–78CrossRefGoogle Scholar
  22. Jauhiainen J, Jaya A, Inoue T, Heikkinen J, Martikainen P, Vasander H. 2004. Carbon balance in managed tropical peat in Central Kalimantan. In: Päivänen J, Ed. Proceedings of the 12th International Peat Congress, Tampere 6–11.6.2004. p 653–9Google Scholar
  23. Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H. 2005. Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol 11: 1788–97CrossRefGoogle Scholar
  24. Kuzyakov Y, Cheng W. 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33: 1915–25CrossRefGoogle Scholar
  25. Law BE, Ryan MG, Anthoni PM. 1999. Seasonal and annual respiration of ponderosa pine ecosystem. Glob Chang Biol 5: 169–82CrossRefGoogle Scholar
  26. Martikainen PJ, Nykänen H, Alm J, Silvola J. 1995. Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil 168–169: 571–7CrossRefGoogle Scholar
  27. Melling L, Hatano R, Goh KJ. 2005a. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B 57: 1–11CrossRefGoogle Scholar
  28. Melling L, Hatano R, Goh KJ. 2005b. Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol Biochem 37: 1445–53CrossRefGoogle Scholar
  29. Morgenstern K, Black TA, Humphreys ER, Griffis TJ, Drewitt GB, Cai T, Nesic Z, Spittlehouse DL, Livingston NJ. 2004. Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agr Forest Meteorol 123: 201–19CrossRefGoogle Scholar
  30. Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ. 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochem Cycles 12: 53–70CrossRefGoogle Scholar
  31. Page SE, Rieley JO, Doody K, Hodgson S, Husson S, Jenkins PM, Morrough-Bernard H, Otway S, Wilshaw S. 1997. Biodiversity of tropical peat swamp forest: a case study of animal diversity in the Sungai Sebangau catchment in Central Kalimantan. In: Rieley JO, Page SE, Eds. Biodiversity and sustainability of tropical peatlands. Cardigan: Samara Publishing, p 231–42Google Scholar
  32. Page SE, Rieley JO, Shotyk OW, Weiss D. 1999. Interdependence of peat and vegetation in a tropical peat swamp forest. Philos Trans R Soc Lond B 354: 1885–97CrossRefGoogle Scholar
  33. Page SE, Wüst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH. 2004. A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19: 625–35CrossRefGoogle Scholar
  34. Ryan MG, Law BE. 2005. Interpreting, measuring, and modelling soil respiration. Biogeochemistry 73: 3–27CrossRefGoogle Scholar
  35. Saigusa N, Yamamoto S, Murayama S, Kondo H. 2005. Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agr Forest Meteorol 134: 4–16CrossRefGoogle Scholar
  36. Schwendenmann L, Veldkamp E, Brenes T, O’Brien JJ, Mackensen J. 2003. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64: 111–28CrossRefGoogle Scholar
  37. Shimada S, Takahashi H, Haraguchi A, Kaneko M. 2001. The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53: 249–67CrossRefGoogle Scholar
  38. Sinha V, Williams J, Crutzen PJ, Lelieveld J. 2007. Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements. Atmos Chem Phys Discuss 7: 14011–39CrossRefGoogle Scholar
  39. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9: 161–85CrossRefGoogle Scholar
  40. Sulistiyanto Y. 2004. Nutrient dynamics in different sub-types of peat swamp forest in Central Kalimantan, Indonesia. Ph.D Thesis, University of Nottingham. 351 p + 9 AppendixesGoogle Scholar
  41. Svensson BH, Sundh I. 1992. Factors affecting methane production in peat soils. Suo 43: 183–90Google Scholar
  42. Takahashi H, Shimada S, Ibie BI, Usup A, Yudha, Limin SH. 2002. Annual changes of water balance and a drought index in a tropical peat swamp forest of Central Kalimantan, Indonesia. In: Rieley JO, Page SE, Setiadi B, Eds. Peatlands for people: natural resource functions and sustainable management, Proceedings of the International Symposium on Tropical Peatland, 22–23 August 2001, Jakarta, Indonesia. BPPT and Indonesian Peat Association. p 63–7Google Scholar
  43. Takahashi H, Usup A, Hayasaka H, Limin SH. 2003. Estimation of ground water level in a peat swamp forest as an index of peat/forest fire. In: Osaki M, Iwakuma T, Kohyama T, Hatano R, Yonebayashi K, Tachibana H, Takahashi H, Shinao T, Higashi S, Simbolon H, Tuah SJ, Wijaya H, Limin SH, Eds. Proceedings of the International Symposium on Land Management and Biodiversity in Southeast Asia. Bali, Indonesia, 1–20 September 2002. Hokkaido University, Sapporo, and the Indonesian Institute of Science, Bogor. p 311–4Google Scholar
  44. Tang J, Baldocchi DD, Xu L. 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol 11: 1298–304CrossRefGoogle Scholar
  45. Toyota K, Okazaki M. 2004. Effect of moisture conditions and vegetation type on microbial community of tropical peat soils. Necessity of establishment of inventory on carbon cycling in tropical peatland ecosystems for sustainable agroproduction and environmental conservation. Report number 13574012. Field Science Center for Northern Biosphere, Hokkaido University, Sapporo. p 30–41Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Takashi Hirano
    • 1
    Email author
  • Jyrki Jauhiainen
    • 2
  • Takashi Inoue
    • 1
  • Hidenori Takahashi
    • 3
  1. 1.Research Faculty of AgricultureHokkaido UniversitySapporoJapan
  2. 2.Department of Forest EcologyUniversity of Helsinki HelsinkiFinland
  3. 3.Hokkaido Institute of Hydro-ClimateSapporoJapan

Personalised recommendations