Periodical Cicada Detritus Impacts Stream Ecosystem Metabolism

Abstract

The emergence of 17-year periodical cicadas in Maryland, USA, in 2004 provided a unique opportunity to study the effect of a large, but temporally limited, resource pulse of arthropod detritus on stream ecosystem function. Cicada emergence was quantified in the forests adjacent to two small streams with different histories of riparian disturbance (Intact and Disturbed sites). We estimated the input of cicada detritus to the streams, described its retention and breakdown dynamics, and measured whole-stream respiration over the cicada flight season (May–July). Average emergence density was significantly greater at the Intact site, but average cicada detritus input rates were greater at the Disturbed site. Cicada detritus was locally retained within both streams and rapidly broke down. Daily whole-stream respiration (CR24) at both sites responded dramatically to the cicada pulse, with CR24 doubling pre-cicada measurements following the period of greatest cicada input (Intact: 12.82 → 23.78 g O2 m−2 d−1; Disturbed: 2.76 → 5.77 g O2 m−2 d−1). CR24 returned to baseline levels when cicada input decreased at the Intact site, but more than doubled again at the Disturbed site (13.14 g O2 m−2 d−1), despite a decline in cicada input rate. Differences in respiration response may be a function of differences in cicada input rates as well as differences in microbial community activity. The strong effects on stream ecosystem function exerted by a short but intense input of periodical cicada detritus may provide insights regarding the response of streams to other irregular resource pulses.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Addy K, Gold A, Nowicki B, McKenna J, Stolt M, Groffman P. 2005. Denitrification capacity in a subterranean estuary below a Rhode Island fringing salt marsh. Estuaries 28:896–908

    Article  CAS  Google Scholar 

  2. Addy K, Kellogg DQ, Gold AJ, Groffman PM, Ferendo G, Sawyer C. 2002. In situ push-pull method to determine ground water denitrification in riparian zones. J Environ Qual 31:1017–24

    PubMed  CAS  Article  Google Scholar 

  3. Anderson WB, Polis GA. 1999. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–32

    Article  Google Scholar 

  4. Andrews EA. 1921. Periodical cicadas in Baltimore, Md. Sci Mon 12:310–29

    Google Scholar 

  5. Baxter CV, Fausch KD, Murakami M, Chapman PL. 2004. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85:2656–63

    Article  Google Scholar 

  6. Baxter CV, Fausch KD, Saunders WC. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–20

    Article  Google Scholar 

  7. Benfield EF. 1996. Leaf breakdown in stream ecosystems. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. San Diego: Academic Press. pp 579–89

    Google Scholar 

  8. Bott TL. 1996. Primary productivity and community respiration. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. San Diego: Academic Press. pp 533–56

    Google Scholar 

  9. Bott TL, Newbold JD, Arscott DB. 2006. Ecosystem metabolism in Piedmont streams: reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9:398–421

    Article  Google Scholar 

  10. Brookshire ENJ, Dwire KA. 2003. Controls on patterns of coarse organic particle retention in headwater streams. J North Am Benthol Soc 22:17–34

    Article  Google Scholar 

  11. Brown JJ, Chippendale GM. 1973. Nature and fate of nutrient reserves of the periodical (17 year) cicada. J Insect Physiol 19:607–14

    Article  CAS  Google Scholar 

  12. Burkholder JM, Mallin MA, Glasgow Jr HB, Larsen LM, McIver MR, Shank GC, Deamer-Melia N, Briley DS, Springer J, Touchette BW, Hannon EK. 1997. Impacts to a coastal river and estuary from rupture of a large swine waste holding lagoon. J Environ Qual 26:1451–66

    CAS  Article  Google Scholar 

  13. Carpenter SR. 1989. Replication and treatment strength in whole-lake experiments. Ecology 70:453–63

    Article  Google Scholar 

  14. Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES. 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–50

    Article  Google Scholar 

  15. Cloe WW, Garman GC. 1996. The energetic importance of terrestrial arthropod inputs to three warm-water streams. Freshw Biol 36:105–14

    Article  Google Scholar 

  16. Cory E, Knight P. 1937. Observations on brood X of the periodical cicada in Maryland. J Econ Entomol 30:287–94

    Google Scholar 

  17. Cottenie K, De Meester L. 2003. Comment to Oksanen (2001): reconciling Oksanen (2001) and Hurlbert (1984). OIKOS 100:394–6

    Article  Google Scholar 

  18. Dodds WK. 2006. Eutrophication and trophic state in rivers and streams. Limnol Oceanogr 51:671–80

    CAS  Article  Google Scholar 

  19. Dybas HS, Davis DD. 1962. A population census of seventeen-year periodical cicadas (Homoptera:Cicadidae: Magicicada). Ecology 43:432–44

    Article  Google Scholar 

  20. Findlay SEG, Sinsabaugh RL, Sobczak WV, Hoostal M. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol Oceanogr 48:1608–17

    CAS  Article  Google Scholar 

  21. Fisher SG, Likens GE. 1972. Stream ecosystem—organic energy budget. BioScience 22:33–5

    Article  Google Scholar 

  22. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–9

    PubMed  Article  CAS  Google Scholar 

  23. Garman GC, Macko SA. 1998. Contribution of marine-derived organic matter to an Atlantic coast, freshwater, tidal stream by anadromous clupeid fishes. J North Am Benthol Soc 17:277–85

    Article  Google Scholar 

  24. Gessner MO, Chauvet E. 2002. A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498–510

    Article  Google Scholar 

  25. Graham C, Cochran AB. 1954. The periodical cicada in Maryland in 1953. J Econ Entomol 47:242–4

    Google Scholar 

  26. Heath JE. 1968. Thermal synchronization of emergence in periodical 17-year cicadas (Homoptera, Cicadidae, Magicicada). Am Midl Nat 80:440–8

    Article  Google Scholar 

  27. Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  28. Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO. 1998a. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–6

    PubMed  Article  CAS  Google Scholar 

  29. Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO. 1998b. Mast seeding and Lyme disease. Trends Ecol Evol 13:506

    Article  Google Scholar 

  30. Judd KE, Crump BC, Kling GW. 2006. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068–79

    PubMed  Article  Google Scholar 

  31. Karban R. 1982. Increased reproductive success at high-densities and predator satiation for periodical cicadas. Ecology 63:321–8

    Article  Google Scholar 

  32. Kellogg DQ, Gold AJ, Groffman PM, Addy K, Stolt MH, Blazejewski G. 2005. In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands. J Environ Qual 34:524–33

    PubMed  CAS  Article  Google Scholar 

  33. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberber O. 2006. SAS for mixed models, 2nd edn. Cary (NC): SAS Institute. p 814

    Google Scholar 

  34. Maier CT. 1982. Abundance and distribution of the seventeen-year periodical cicada, Magicicada septendecim (Linnaeus) (Hemiptera: Cicadidae—Brood II), in Connecticut. Proc Entomol Soc Wash 84:430–9

    Google Scholar 

  35. Marlatt CL. 1907. The periodical cicada. Bull USDA Bur Entomol 71:1–181

    Google Scholar 

  36. Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM, Freidenburg TL, Gaines SD, Hudson G, Krenz C, Leslie H, Menge DNL, Russell R, Webster MS. 2003. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc Natl Acad Sci USA 100:12229–34

    PubMed  Article  CAS  Google Scholar 

  37. Menninger HL. 2007. Terrestrial-aquatic linkages in human-altered landscapes [dissertation]. College Park (MD): University of Maryland. p 138

    Google Scholar 

  38. Moore AA, Palmer MA. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol Appl 15:1169–77

    Article  Google Scholar 

  39. Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ. 2001. Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–17

    Article  CAS  Google Scholar 

  40. Naiman RJ, Bilby RE, Schindler DE, Helfield JM. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417

    Article  Google Scholar 

  41. Nakano S, Miyasaka H, Kuhara N. 1999. Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80:2435–41

    Google Scholar 

  42. Nowlin WH, Gonzalez MJ, Vanni MJ, Stevens MHH, Fields MW, Valente JJ. 2007. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities. Ecology 88:2174–86

    PubMed  Article  Google Scholar 

  43. Nowlin WH, Vanni MJ, Yang LH. 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89:647–59

    PubMed  Article  Google Scholar 

  44. Oksanen L. 2001. Logic of experiments in ecology: is pseudoreplication a pseudoissue? OIKOS 94:27–38

    Article  Google Scholar 

  45. Ostfeld RS, Jones CG, Wolff JO. 1996. Of mice and mast. BioScience 46:323–30

    Article  Google Scholar 

  46. Ostfeld RS, Keesing F. 2000. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–7

    PubMed  Article  Google Scholar 

  47. Ostrofsky ML. 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J North Am Benthol Soc 16:750–9

    Article  Google Scholar 

  48. Owens M, Edwards RW, Gibbs JW. 1964. Some reaeration studies in streams. Air Water Pollut 8:469–86

    PubMed  CAS  Google Scholar 

  49. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon−13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3

    PubMed  Article  CAS  Google Scholar 

  50. Petersen RC, Cummins KW. 1974. Leaf processing in a woodland stream. Freshw Biol 4:343–68

    Article  Google Scholar 

  51. Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  52. Polis GA, Hurd SD. 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–6

    PubMed  Article  CAS  Google Scholar 

  53. Pray CL, Nowlin WH, Vanni MJ. 2008. Deposition and decomposition of periodical cicadas (Homoptera: Cicadidae: Magicicada) in woodland aquatic ecosystems. J North Am Benthol Soc (in press)

  54. Roberts BJ, Mulholland PJ, Hill WR. 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results of 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606

    Article  CAS  Google Scholar 

  55. Rodenhouse NL, Bohlen PJ, Barrett GW. 1997. Effects of woodland shape on the spatial distribution and density of 17-year periodical cicadas (Homoptera: Cicadidae). Am Midl Nat 137:124–35

    Article  Google Scholar 

  56. Schmitt JB. 1974. The distribution of brood ten of the periodical cicadas in New Jersey in 1970. J N Y Entomol Soc 82:189–201

    Google Scholar 

  57. Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological research. 3rd edn. New York: WH Freeman. p 887

    Google Scholar 

  58. Speaker RW, Luchessa KJ, Franklin JF, Gregory SV. 1988. The use of plastic strips to measure leaf retention by riparian vegetation in a coastal Oregon stream. Am Midl Nat 120:22–31

    Article  Google Scholar 

  59. Stewart-Oaten A, Murdoch WW, Parker KR. 1986. Environmental impact assessment: “pseudoreplication” in time? Ecology 67:929–40

    Article  Google Scholar 

  60. Swan CM, Palmer MA. 2004. Leaf diversity alters litter breakdown in a Piedmont stream. J North Am Benthol Soc 23:15–28

    Article  Google Scholar 

  61. Uehlinger U. 2006. Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a flood prone river during a 15-year period. Freshw Biol 51:938–50

    Article  CAS  Google Scholar 

  62. Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–4

    Article  CAS  Google Scholar 

  63. Webster JR, Benfield EF. 1986. Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–94

    Article  Google Scholar 

  64. Webster JR, Covich AP, Tank JL, Crockett TV. 1994. Retention of coarse organic particles in streams in the southern Appalachian mountains. J North Am Benthol Soc 13:140–50

    Article  Google Scholar 

  65. Webster JR, Meyer JL. 1997. Organic matter budgets for streams: a synthesis. J North Am Benthol Soc 16:141–61

    Article  Google Scholar 

  66. Webster JR, Wallace JB, Benfield EF. 1995. Organic processes in streams of the eastern United States. In: Cushing CE, Cummins KW, Minshall GW, Eds. River and stream ecosystems. Amsterdam: Elsevier Science. pp 117–87

    Google Scholar 

  67. Whiles MR, Callaham Jr MA, Meyer CK, Brock BL, Charlton RE. 2001. Emergence of periodical cicadas (Magicicada cassini) from a Kansas riparian forest: densities, biomass, and nitrogen flux. Am Midl Nat 145:176–87

    Article  Google Scholar 

  68. White J. 1980. Resource partitioning by ovipositing cicadas. Am Nat 115:1–28

    Article  Google Scholar 

  69. White J, Strehl CE. 1978. Xylem feeding by periodical cicada nymphs on tree toots. Ecol Entomol 3:323–7

    Article  Google Scholar 

  70. Williams KS, Simon C. 1995. The ecology, behavior, and evolution of periodical cicadas. Annu Rev Entomol 40:269–95

    Article  CAS  Google Scholar 

  71. Williams KS, Smith KG, Stephen FM. 1993. Emergence of 13-yr periodical cicadas (Cicadidae, Magicicada)—phenology, mortality, and predator satiation. Ecology 74:1143–52

    Article  Google Scholar 

  72. Yang LH. 2004. Periodical cicadas as resource pulses in North American forests. Science 306:1565–7

    PubMed  Article  CAS  Google Scholar 

  73. Yang LH. 2006. Periodical cicadas use light for oviposition site selection. Proc R Soc B Biol Sci 273:2993–3000

    Article  Google Scholar 

  74. Yang LH, Bastow JL, Spence KO, Wright AN. 2008. What can we learn from pulses? Ecology 89:621–34

    PubMed  Article  Google Scholar 

  75. Young SA, Kovalak WP, Del Signore KA. 1978. Distances traveled by autumn-shed leaves introduced into a woodland stream. Am Midl Nat 100:217–20

    Article  Google Scholar 

  76. Zhang Y, Negishi JN, Richardson JS, Kolodziejczyk R. 2003. Impacts of marine-derived nutrients on stream ecosystem functioning. Proc R Soc Lond B Biol Sci 270:2117–23

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Palmer Stream Ecology Laboratory for their invaluable assistance with research design and fieldwork, particularly Brooke Hassett, Bob Smith, Chris Patrick, Jen Morse, Kat Cappillino, Matt Reardon, and Roshan Randeniya. We thank Andy Baldwin, Bob Denno, Irv Forseth, Bill Lamp, Mike Vanni, and the anonymous reviewers for suggestions that greatly improved earlier versions of this manuscript. This research was supported by a grant-in-aid from the Washington, DC Cosmos Club Foundation to HLM and an EPA STAR award (R828012) and NSF Award (DEB 9741101) to MAP. Contribution 4221 of the University of Maryland Center for Environmental Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Holly L. Menninger.

Additional information

HM, MP, LC, and DR conceived and designed study; HM, LC, and DR performed research; HM, LC, and DR analyzed data; HM, MP, LC, and DR wrote the paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Menninger, H.L., Palmer, M.A., Craig, L.S. et al. Periodical Cicada Detritus Impacts Stream Ecosystem Metabolism. Ecosystems 11, 1306–1317 (2008). https://doi.org/10.1007/s10021-008-9194-4

Download citation

Keywords

  • allochthonous inputs
  • subsidy
  • resource pulse
  • periodical cicadas
  • ecosystem function
  • Magicicada
  • community respiration