Skip to main content
Log in

Periodical Cicada Detritus Impacts Stream Ecosystem Metabolism

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The emergence of 17-year periodical cicadas in Maryland, USA, in 2004 provided a unique opportunity to study the effect of a large, but temporally limited, resource pulse of arthropod detritus on stream ecosystem function. Cicada emergence was quantified in the forests adjacent to two small streams with different histories of riparian disturbance (Intact and Disturbed sites). We estimated the input of cicada detritus to the streams, described its retention and breakdown dynamics, and measured whole-stream respiration over the cicada flight season (May–July). Average emergence density was significantly greater at the Intact site, but average cicada detritus input rates were greater at the Disturbed site. Cicada detritus was locally retained within both streams and rapidly broke down. Daily whole-stream respiration (CR24) at both sites responded dramatically to the cicada pulse, with CR24 doubling pre-cicada measurements following the period of greatest cicada input (Intact: 12.82 → 23.78 g O2 m−2 d−1; Disturbed: 2.76 → 5.77 g O2 m−2 d−1). CR24 returned to baseline levels when cicada input decreased at the Intact site, but more than doubled again at the Disturbed site (13.14 g O2 m−2 d−1), despite a decline in cicada input rate. Differences in respiration response may be a function of differences in cicada input rates as well as differences in microbial community activity. The strong effects on stream ecosystem function exerted by a short but intense input of periodical cicada detritus may provide insights regarding the response of streams to other irregular resource pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Addy K, Gold A, Nowicki B, McKenna J, Stolt M, Groffman P. 2005. Denitrification capacity in a subterranean estuary below a Rhode Island fringing salt marsh. Estuaries 28:896–908

    Article  CAS  Google Scholar 

  • Addy K, Kellogg DQ, Gold AJ, Groffman PM, Ferendo G, Sawyer C. 2002. In situ push-pull method to determine ground water denitrification in riparian zones. J Environ Qual 31:1017–24

    Article  PubMed  CAS  Google Scholar 

  • Anderson WB, Polis GA. 1999. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–32

    Article  Google Scholar 

  • Andrews EA. 1921. Periodical cicadas in Baltimore, Md. Sci Mon 12:310–29

    Google Scholar 

  • Baxter CV, Fausch KD, Murakami M, Chapman PL. 2004. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85:2656–63

    Article  Google Scholar 

  • Baxter CV, Fausch KD, Saunders WC. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–20

    Article  Google Scholar 

  • Benfield EF. 1996. Leaf breakdown in stream ecosystems. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. San Diego: Academic Press. pp 579–89

    Google Scholar 

  • Bott TL. 1996. Primary productivity and community respiration. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. San Diego: Academic Press. pp 533–56

    Google Scholar 

  • Bott TL, Newbold JD, Arscott DB. 2006. Ecosystem metabolism in Piedmont streams: reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9:398–421

    Article  Google Scholar 

  • Brookshire ENJ, Dwire KA. 2003. Controls on patterns of coarse organic particle retention in headwater streams. J North Am Benthol Soc 22:17–34

    Article  Google Scholar 

  • Brown JJ, Chippendale GM. 1973. Nature and fate of nutrient reserves of the periodical (17 year) cicada. J Insect Physiol 19:607–14

    Article  CAS  Google Scholar 

  • Burkholder JM, Mallin MA, Glasgow Jr HB, Larsen LM, McIver MR, Shank GC, Deamer-Melia N, Briley DS, Springer J, Touchette BW, Hannon EK. 1997. Impacts to a coastal river and estuary from rupture of a large swine waste holding lagoon. J Environ Qual 26:1451–66

    Article  CAS  Google Scholar 

  • Carpenter SR. 1989. Replication and treatment strength in whole-lake experiments. Ecology 70:453–63

    Article  Google Scholar 

  • Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES. 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–50

    Article  Google Scholar 

  • Cloe WW, Garman GC. 1996. The energetic importance of terrestrial arthropod inputs to three warm-water streams. Freshw Biol 36:105–14

    Article  Google Scholar 

  • Cory E, Knight P. 1937. Observations on brood X of the periodical cicada in Maryland. J Econ Entomol 30:287–94

    Google Scholar 

  • Cottenie K, De Meester L. 2003. Comment to Oksanen (2001): reconciling Oksanen (2001) and Hurlbert (1984). OIKOS 100:394–6

    Article  Google Scholar 

  • Dodds WK. 2006. Eutrophication and trophic state in rivers and streams. Limnol Oceanogr 51:671–80

    Article  CAS  Google Scholar 

  • Dybas HS, Davis DD. 1962. A population census of seventeen-year periodical cicadas (Homoptera:Cicadidae: Magicicada). Ecology 43:432–44

    Article  Google Scholar 

  • Findlay SEG, Sinsabaugh RL, Sobczak WV, Hoostal M. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol Oceanogr 48:1608–17

    Article  CAS  Google Scholar 

  • Fisher SG, Likens GE. 1972. Stream ecosystem—organic energy budget. BioScience 22:33–5

    Article  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–9

    Article  PubMed  CAS  Google Scholar 

  • Garman GC, Macko SA. 1998. Contribution of marine-derived organic matter to an Atlantic coast, freshwater, tidal stream by anadromous clupeid fishes. J North Am Benthol Soc 17:277–85

    Article  Google Scholar 

  • Gessner MO, Chauvet E. 2002. A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498–510

    Article  Google Scholar 

  • Graham C, Cochran AB. 1954. The periodical cicada in Maryland in 1953. J Econ Entomol 47:242–4

    Google Scholar 

  • Heath JE. 1968. Thermal synchronization of emergence in periodical 17-year cicadas (Homoptera, Cicadidae, Magicicada). Am Midl Nat 80:440–8

    Article  Google Scholar 

  • Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO. 1998a. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–6

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO. 1998b. Mast seeding and Lyme disease. Trends Ecol Evol 13:506

    Article  Google Scholar 

  • Judd KE, Crump BC, Kling GW. 2006. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068–79

    Article  PubMed  Google Scholar 

  • Karban R. 1982. Increased reproductive success at high-densities and predator satiation for periodical cicadas. Ecology 63:321–8

    Article  Google Scholar 

  • Kellogg DQ, Gold AJ, Groffman PM, Addy K, Stolt MH, Blazejewski G. 2005. In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands. J Environ Qual 34:524–33

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberber O. 2006. SAS for mixed models, 2nd edn. Cary (NC): SAS Institute. p 814

    Google Scholar 

  • Maier CT. 1982. Abundance and distribution of the seventeen-year periodical cicada, Magicicada septendecim (Linnaeus) (Hemiptera: Cicadidae—Brood II), in Connecticut. Proc Entomol Soc Wash 84:430–9

    Google Scholar 

  • Marlatt CL. 1907. The periodical cicada. Bull USDA Bur Entomol 71:1–181

    Google Scholar 

  • Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM, Freidenburg TL, Gaines SD, Hudson G, Krenz C, Leslie H, Menge DNL, Russell R, Webster MS. 2003. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc Natl Acad Sci USA 100:12229–34

    Article  PubMed  CAS  Google Scholar 

  • Menninger HL. 2007. Terrestrial-aquatic linkages in human-altered landscapes [dissertation]. College Park (MD): University of Maryland. p 138

    Google Scholar 

  • Moore AA, Palmer MA. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol Appl 15:1169–77

    Article  Google Scholar 

  • Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ. 2001. Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–17

    Article  CAS  Google Scholar 

  • Naiman RJ, Bilby RE, Schindler DE, Helfield JM. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417

    Article  Google Scholar 

  • Nakano S, Miyasaka H, Kuhara N. 1999. Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80:2435–41

    Google Scholar 

  • Nowlin WH, Gonzalez MJ, Vanni MJ, Stevens MHH, Fields MW, Valente JJ. 2007. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities. Ecology 88:2174–86

    Article  PubMed  Google Scholar 

  • Nowlin WH, Vanni MJ, Yang LH. 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89:647–59

    Article  PubMed  Google Scholar 

  • Oksanen L. 2001. Logic of experiments in ecology: is pseudoreplication a pseudoissue? OIKOS 94:27–38

    Article  Google Scholar 

  • Ostfeld RS, Jones CG, Wolff JO. 1996. Of mice and mast. BioScience 46:323–30

    Article  Google Scholar 

  • Ostfeld RS, Keesing F. 2000. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–7

    Article  PubMed  Google Scholar 

  • Ostrofsky ML. 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J North Am Benthol Soc 16:750–9

    Article  Google Scholar 

  • Owens M, Edwards RW, Gibbs JW. 1964. Some reaeration studies in streams. Air Water Pollut 8:469–86

    PubMed  CAS  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon−13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Cummins KW. 1974. Leaf processing in a woodland stream. Freshw Biol 4:343–68

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Polis GA, Hurd SD. 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–6

    Article  PubMed  CAS  Google Scholar 

  • Pray CL, Nowlin WH, Vanni MJ. 2008. Deposition and decomposition of periodical cicadas (Homoptera: Cicadidae: Magicicada) in woodland aquatic ecosystems. J North Am Benthol Soc (in press)

  • Roberts BJ, Mulholland PJ, Hill WR. 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results of 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606

    Article  CAS  Google Scholar 

  • Rodenhouse NL, Bohlen PJ, Barrett GW. 1997. Effects of woodland shape on the spatial distribution and density of 17-year periodical cicadas (Homoptera: Cicadidae). Am Midl Nat 137:124–35

    Article  Google Scholar 

  • Schmitt JB. 1974. The distribution of brood ten of the periodical cicadas in New Jersey in 1970. J N Y Entomol Soc 82:189–201

    Google Scholar 

  • Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological research. 3rd edn. New York: WH Freeman. p 887

    Google Scholar 

  • Speaker RW, Luchessa KJ, Franklin JF, Gregory SV. 1988. The use of plastic strips to measure leaf retention by riparian vegetation in a coastal Oregon stream. Am Midl Nat 120:22–31

    Article  Google Scholar 

  • Stewart-Oaten A, Murdoch WW, Parker KR. 1986. Environmental impact assessment: “pseudoreplication” in time? Ecology 67:929–40

    Article  Google Scholar 

  • Swan CM, Palmer MA. 2004. Leaf diversity alters litter breakdown in a Piedmont stream. J North Am Benthol Soc 23:15–28

    Article  Google Scholar 

  • Uehlinger U. 2006. Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a flood prone river during a 15-year period. Freshw Biol 51:938–50

    Article  CAS  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–4

    Article  CAS  Google Scholar 

  • Webster JR, Benfield EF. 1986. Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–94

    Article  Google Scholar 

  • Webster JR, Covich AP, Tank JL, Crockett TV. 1994. Retention of coarse organic particles in streams in the southern Appalachian mountains. J North Am Benthol Soc 13:140–50

    Article  Google Scholar 

  • Webster JR, Meyer JL. 1997. Organic matter budgets for streams: a synthesis. J North Am Benthol Soc 16:141–61

    Article  Google Scholar 

  • Webster JR, Wallace JB, Benfield EF. 1995. Organic processes in streams of the eastern United States. In: Cushing CE, Cummins KW, Minshall GW, Eds. River and stream ecosystems. Amsterdam: Elsevier Science. pp 117–87

    Google Scholar 

  • Whiles MR, Callaham Jr MA, Meyer CK, Brock BL, Charlton RE. 2001. Emergence of periodical cicadas (Magicicada cassini) from a Kansas riparian forest: densities, biomass, and nitrogen flux. Am Midl Nat 145:176–87

    Article  Google Scholar 

  • White J. 1980. Resource partitioning by ovipositing cicadas. Am Nat 115:1–28

    Article  Google Scholar 

  • White J, Strehl CE. 1978. Xylem feeding by periodical cicada nymphs on tree toots. Ecol Entomol 3:323–7

    Article  Google Scholar 

  • Williams KS, Simon C. 1995. The ecology, behavior, and evolution of periodical cicadas. Annu Rev Entomol 40:269–95

    Article  CAS  Google Scholar 

  • Williams KS, Smith KG, Stephen FM. 1993. Emergence of 13-yr periodical cicadas (Cicadidae, Magicicada)—phenology, mortality, and predator satiation. Ecology 74:1143–52

    Article  Google Scholar 

  • Yang LH. 2004. Periodical cicadas as resource pulses in North American forests. Science 306:1565–7

    Article  PubMed  CAS  Google Scholar 

  • Yang LH. 2006. Periodical cicadas use light for oviposition site selection. Proc R Soc B Biol Sci 273:2993–3000

    Article  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN. 2008. What can we learn from pulses? Ecology 89:621–34

    Article  PubMed  Google Scholar 

  • Young SA, Kovalak WP, Del Signore KA. 1978. Distances traveled by autumn-shed leaves introduced into a woodland stream. Am Midl Nat 100:217–20

    Article  Google Scholar 

  • Zhang Y, Negishi JN, Richardson JS, Kolodziejczyk R. 2003. Impacts of marine-derived nutrients on stream ecosystem functioning. Proc R Soc Lond B Biol Sci 270:2117–23

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Palmer Stream Ecology Laboratory for their invaluable assistance with research design and fieldwork, particularly Brooke Hassett, Bob Smith, Chris Patrick, Jen Morse, Kat Cappillino, Matt Reardon, and Roshan Randeniya. We thank Andy Baldwin, Bob Denno, Irv Forseth, Bill Lamp, Mike Vanni, and the anonymous reviewers for suggestions that greatly improved earlier versions of this manuscript. This research was supported by a grant-in-aid from the Washington, DC Cosmos Club Foundation to HLM and an EPA STAR award (R828012) and NSF Award (DEB 9741101) to MAP. Contribution 4221 of the University of Maryland Center for Environmental Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly L. Menninger.

Additional information

HM, MP, LC, and DR conceived and designed study; HM, LC, and DR performed research; HM, LC, and DR analyzed data; HM, MP, LC, and DR wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menninger, H.L., Palmer, M.A., Craig, L.S. et al. Periodical Cicada Detritus Impacts Stream Ecosystem Metabolism. Ecosystems 11, 1306–1317 (2008). https://doi.org/10.1007/s10021-008-9194-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9194-4

Keywords

Navigation