Skip to main content
Log in

The Role of Allochthonous Inputs of Dissolved Organic Carbon on the Hypolimnetic Oxygen Content of Reservoirs

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Hypolimnetic oxygen content in lentic ecosystems has traditionally been modeled as a function of variables measured at the epilimnion, or that are supposed to drive epilimnetic processes, like total phosphorus load. However, in man-made reservoirs the river inflow can plunge into deep layers, directly linking the hypolimnion with the surrounding watershed. In these circumstances, organic matter carried by the river can influence the hypolimnetic oxygen content without important intervention of epilimnetic processes. Taking long-term data from two reservoirs in Spain, we applied an empirical regression approach to show that the dissolved organic matter carried by the river is the main driver shaping the hypolimnetic oxygen content. By contrast, typical variables commonly included in the modeling of the oxygen content in the hypolimnion (nutrient concentrations, chlorophyll a, and dissolved organic carbon measured in the water column) did not show any significant correlation. Interpretations from this regression approach were supported by a comparison between the monthly oxygen consumption in the hypolimnion and the monthly dissolved organic carbon load from the river inflow. We also revisited the prediction of the year-to-year variability of the Nürnberg’s anoxic factor in four reservoirs from Spain and the USA, explicitly including the allochthonous sources in the equations. These sources were significant predictors of the anoxic factor, especially in those systems subject to relatively high human impact. Thus, effects of allochthonous dissolved organic carbon should always be considered in empirical modeling and management of reservoir hypolimnetic processes related to oxygen content (for example, anoxia, nutrient internal loading, or phosphorus cycle resilience).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alcalá FJ. 2005. Recarga a los acuíferos españoles mediante balance hidrogeoquímico. PhD dissertation. Barcelona: Universitat Politècnica de Catalunya. pp. 751

  • Anderson MJ, Legendre P. 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J Stat Comput Simul 62: 271–303

    Article  Google Scholar 

  • Armengol J, Sabater F, Vidal A, Sabater S. 1991. Using the rescaled range analysis for the study of hydrological records: the river Ter as an example. Oecol Aquat 10: 21–33

    Google Scholar 

  • Armengol J, García JC, Comerma M, Romero M, Dolz J, Roura M, Han BP, Vidal A, Šimek K. 1999. Longitudinal processes in canyon type reservoirs: the case of Sau (N.E. Spain). Tundisi G, Straškraba M. eds Theoretical reservoir ecology and its applications. São Carlos: Brazilian Academy of Sciences and Backhuys Publishers. pp. 313–45

  • Avila A, Alarcon M. 1999. Relationship between precipitation chemistry and meteorological situations at a rural site in NE Spain. Atmos Environ 33: 1663–77

    Article  CAS  Google Scholar 

  • Beisner BE, Dent CL, Carpenter SR. 2003. Variability of lakes on the landscape: roles of phosphorus, food webs, and dissolved organic carbon. Ecology 84: 1563–75

    Article  Google Scholar 

  • Benner R. 2003. Molecular indicators of the bioavailability of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL, eds. Aquatic ecosystems. Interactivity of dissolved organic matter. San Diego, CA: Academic Press. p 121–37

    Google Scholar 

  • Bernal S. 2006. Nitrogen storm responses in an intermittent Mediterranean stream. PhD dissertation, Universitat de Barcelona, Barcelona. pp. 235

  • Biddanda BA, Cotner JB. 2002. Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems 5: 431–45

    Article  CAS  Google Scholar 

  • Bond JG. 1978. Geologic map of Idaho, 1:500000. Moscow, ID: Idaho Geological Survey. Map

    Google Scholar 

  • Butturini A. 1998. Contribution of the boundary zones on nutrient dynamics in a stream with Mediterranean regime. PhD dissertation, Universitat de Barcelona, Barcelona. pp. 350

  • Carpenter SR, Ludwig D, Brock WA. 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9: 751–71

    Article  Google Scholar 

  • Chapra SC. 1997. Surface water-quality modeling. New York: McGraw-Hill. pp. 784

  • Charlton MN. 1980. Hypolimnion oxygen consumption in lakes: discussion of productivity and morphometry effects. Can J Fish Aquat Sci 37: 1531–9

    Google Scholar 

  • Claassen HC, Halm DR. 1995. A possible deficiency in estimates of wet deposition obtained from data generated by the NADP/NTN network. Atmos Environ 29: 437–48

    Article  CAS  Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Newroth PR. 1993. Restoration and management of lakes and reservoirs. Boca Raton: Lewis Publishers. pp. 548

  • Cornett RJ. 1989. Predicting changes in hypolimnetic oxygen concentrations with phosphorus retention, temperature, and morphometry. Limnol Oceanogr 34: 1359–66

    CAS  Google Scholar 

  • Cornett RJ, Rigler FH. 1979. Hypolimnion oxygen deficits: their prediction and interpretation. Science 205: 580–1

    Article  PubMed  CAS  Google Scholar 

  • Cornett RJ, Rigler FH. 1980. The areal hypolimnetic oxygen deficit: an empirical test of the model. Limnol Oceanogr 25: 672–9

    CAS  Google Scholar 

  • Crowfoot RM, Payne WF, O’Neill GB. 2003. Water Resources Data Colorado Water Year 2003. Volume 1: Missouri River Basin, Arkansas River Basin, and Rio Grande Basin. Denver, CO: US Geological Survey. pp. 587

  • Daniel MHB, Montebelo AA, Bernardes MC, Ometto JPHB, de Camargo PB, Krusche AV, Ballester MV, Victoria RL, Martinelli LA. 2002. Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba river basin. Water Air Soil Pollut 136: 189–206

    Article  CAS  Google Scholar 

  • del Giorgio PA, Cole JJ, Caraco NF, Peters RH. 1999. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80: 1422–31

    Google Scholar 

  • del Giorgio PA, Davis J. 2003. Patterns in dissolved organic matter lability and consumption across aquatic ecosystems. Findlay SEG, Sinsabaugh RL, eds. Aquatic ecosystems. Interactivity of dissolved organic matter. San Diego, CA: Academic Press. pp. 399–424

  • Findlay SEG. 2003. Bacterial response to variation in dissolved organic matter. Findlay SEG, Sinsabaugh RL, eds Aquatic ecosystems. Interactivity of dissolved organic matter. San Diego, CA: Academic Press. p 363–79

    Google Scholar 

  • Findlay SEG, Sinsabaugh RL, eds. 2003. Aquatic ecosystems. Interactivity of dissolved organic matter. San Diego, CA: Academic Press. pp. 512

  • Folke C, Carpenter SR, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35: 557–81

    Article  Google Scholar 

  • Ford DE. 1990. Reservoir transport processes. Thornton KW, Kimmel BL, Payne FE, eds Reservoir limnology: ecological perspectives. New Jersey: Wiley Interscience. pp. 15–42

  • Foreman CM, Covert JS. 2003. Linkages between dissolved organic matter composition and bacterial community structure. Findlay SEG, Sinsabaugh RL, eds Aquatic ecosystems. Interactivity of dissolved organic matter. San Diego, CA: Academic Press. pp. 343–62

  • Forman RTT, Alexander LE. 1998. Roads and their major ecological effects. Annu Rev Ecol Syst 29: 207–31

    Article  Google Scholar 

  • Freshwater Research, Brown & Caldwell. 2001. Assessment of Brownlee Reservoir water quality. Technical report for the city of Boise, ID. pp. 90

  • Geraldes AM, Boavida MJL. 2004. Limnological variations of a reservoir during two successive years: one wet, another dry. Lakes Reserv: Res Manage 9: 143–52

    Article  Google Scholar 

  • Goldman JC, Caron DA, Dennett MR. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32: 1239–52

    CAS  Google Scholar 

  • Grasshoff K, Erhardt M, Kremling K. 1983. Methods for seawater analysis. Weinheim and New York: Verlag Chemie. pp. 317

  • Harrison JR. 2005. Partitioning Snake River organic matter and modeling aerobic oxidation in Brownlee Reservoir, Idaho. PhD dissertation, University of Idaho, Moscow, ID. pp. 244

  • Houser JN, Bade DL, Cole JJ, Pace ML. 2003. The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and photosynthetic reduction. Biogeochemistry 64: 247–69

    Article  CAS  Google Scholar 

  • Hunt AP, Parry JD, Hamilton-Taylor J. 2000. Further evidence of elemental composition as an indicator of the bioavailability of humic substances to bacteria. Limnol Oceanogr 45: 237–41

    CAS  Google Scholar 

  • Hutchinson GE. 1957. Treatise on limnology. Volume 1: geography, physics and chemistry. New York: John Wiley and Sons. pp. 1015

  • Idaho Department of Environmental Quality (IDEQ), Oregon Department of Environmental Quality (ODEQ). 2004. Snake River-Hells Canyon Total Maximum Daily Load (TMDL). Boise, ID: IDEQ and ODEQ. pp. 638

  • Institut Cartogràfic de Catalunya (ICC) 2002. Mapa geològic de Catalunya 1:50000. Barcelona: Generalitat de Catalunya. Map

    Google Scholar 

  • Jansson M, Karlsson J, Blomqvist P. 2003. Allochthonous organic carbon decreases pelagic energy mobilization in lakes. Limnol Oceanogr 48: 1711–6

    CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167: 191–4

    CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165: 277–304

    Article  CAS  Google Scholar 

  • Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, Band LE, Fisher GT. 2005. Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA 102: 13517–20

    Article  PubMed  CAS  Google Scholar 

  • Kendall C, Silva SR, Kelly VJ. 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol Process 15: 1301–46

    Article  Google Scholar 

  • Kritzberg ES, Cole JJ, Pace ML. 2004. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnol Oceanogr 49: 588–96

    CAS  Google Scholar 

  • Kroer N. 1993. Bacterial growth efficiency on natural dissolved organic matter. Limnol Oceanogr 38: 1282–90

    CAS  Google Scholar 

  • Legendre P. 2002. Program for multiple linear regression (ordinary or through the origin) with permutation test—user’s notes. Montréal: Département de sciences biologiques, Université de Montréal. pp. 11

  • Livingstone DM, Imboden DM. 1996. The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Can J Fish Aquat Sci 53: 924–32

    Article  Google Scholar 

  • Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW. 2005. The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry 72: 191–232

    Article  CAS  Google Scholar 

  • Marcé R, Comerma M, García JC, Gomà J, Armengol J. 2000. Limnology of Foix Reservoir (Barcelona, Spain). Limnetica 19: 175–191

    Google Scholar 

  • Marcé R, Comerma M, García JC, Armengol J. 2004. A neuro-fuzzy modelling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnol Oceanogr: Methods 2: 342–55

    Google Scholar 

  • Marcé R, Moreno-Ostos E, Ordóñez J, Feijoo C, Navarro E, Caputo L, Armengol J. 2006. Nutrient fluxes through boundaries in the hypolimnion of Sau Reservoir: expected patterns and unanticipated processes. Limnetica 25: 527–40

    Google Scholar 

  • Mattheus DA, Effler SW. 2006. Assessment of long-term trends in the oxygen resources of a recovering urban lake, Onondaga Lake, New York. Lake Reserv Manage 22:19–32

    Google Scholar 

  • McCallister SL, Bauer JE, Cherrier JE, Ducklow HW. 2004. Assessing sources and ages of organic matter supporting river and estuarine bacterial production: a multiple-isotope (Δ14C, δ13C, and δ15N) approach. Limnol Oceanogr 49: 1687–1702

    CAS  Google Scholar 

  • McKnight DM, Hood E, Klapper L. 2003. Trace organic moieties of dissolved organic material in natural waters. Findlay SEG, Sinsabaugh RL, eds. Aquatic ecosystems. Interactivity of dissolved organic matter. San Diego, CA: Academic Press. pp. 71–96

  • McManus J, Heinen EA, Baehr MM. 2003. Hypolimnetic oxidation rates in Lake Superior: role of dissolved organic material on the lake’s carbon budget. Limnol Oceanogr 48: 1624–32

    CAS  Google Scholar 

  • Michel RL. 1992. Residence times in river basins as determined by analysis of long-term tritium records. J Hydrol 130: 367–78

    Article  Google Scholar 

  • Molot LA, Dillon PJ, Clark BJ, Neary BP. 1992. Predicting end-of-summer oxygen profiles in stratified lakes. Can J Fish Aquat Sci 49: 2363–72

    CAS  Google Scholar 

  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27: 31–6

    Article  CAS  Google Scholar 

  • Nürnberg GK. 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol Oceanogr 29: 111–24

    Google Scholar 

  • Nürnberg GK. 1995. Quantifying anoxia in lakes. Limnol Oceanogr 40: 1100–11

    Google Scholar 

  • Nürnberg GK. 2002. Quantification of oxygen depletion in lakes and reservoirs with the hypoxic factor. Lake Reserv Manage 18: 299–306

    Google Scholar 

  • Nürnberg GK, LaZerte BD. 2004. Modeling the effect of development on internal phosphorus load in nutrient-poor lakes. Water Resour Res 40: W01105

    Article  CAS  Google Scholar 

  • Pace ML, Prairie YT. 2005. Respiration in lakes. del Giorgio PA, Williams PJ le B, eds Respiration in aquatic ecosystems. New York: Oxford University Press. pp. 103–21

  • Quinlan R, Smol JP, Hall RI. 1998. Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can J Fish Aquat Sci 55: 587–96

    Article  Google Scholar 

  • Raymond P, Bauer J. 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem 23: 469–85

    Article  Google Scholar 

  • Reavie ED, Neill KE, Little JL, Smol JP. 2006. Cultural eutrophication in three southeastern Ontario lakes: a paleolimnological perspective. Lake Reserv Manage 22: 44–58

    Article  CAS  Google Scholar 

  • Reckhow KH. 1979. Empirical lake models for phosphorus: development, applications, limitations and uncertainty. Scavia D, Robertson A, editors. Perspectives on lake ecosystem modeling. Ann Arbor, MI: Ann Arbor Science Publishers. pp. 193–221

  • Reckhow KH, Chapra SC. 1983. Engineering approaches for lake management. Volume 1. Data analysis and empirical modelling. Boston, MA: Butterworth. pp. 340

  • Romaní AM, Sabater S. 1999. Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquat Sci 61: 122–32

    Article  Google Scholar 

  • Rueda F, Moreno-Ostos E, Armengol J. 2006. The residence time of river water in reservoirs. Ecol Model 191: 260–74

    Article  CAS  Google Scholar 

  • Schindler DW. 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–2

    Article  PubMed  CAS  Google Scholar 

  • Stålnacke P, Grimvall A, Sundblad K, Tonderski A. 1999. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environ Monit Assess 58: 173–200

    Article  Google Scholar 

  • Stepanauskas R, Jørgensen NOG, Eigaard OR, Vikas AZ, Tranvik LJ, Leonardson L 2002. Summer inputs of riverine nutrients to the Baltic sea: bioavailability and eutrophication relevance. Ecol Monogr 72: 579–97

    Google Scholar 

  • Straškraba M. 1998. Limnological differences between deep valley reservoirs and deep lakes. Int Rev Hydrobiol 83: 1–12

    Article  Google Scholar 

  • Sokal RR, Rolf FJ. 1995. Biometry. New York: W.H. Freeman and Company. pp. 887

  • Solorzano L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14: 799–801

    Article  CAS  Google Scholar 

  • Søndergaard M, Middelboe M. 1995. A cross-system analysis of labile dissolved organic carbon. Mar Ecol Prog Ser 118: 283–94

    Article  Google Scholar 

  • Søndergaard M, Hansen B, Markager S. 1995. Dynamics of dissolved organic carbon lability in a eutrophic lake. Limnol Oceanogr 40: 46–54

    Google Scholar 

  • Sun L, Perdue EM, Meyer JL, Weis J. 1997. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol Oceanogr 42: 714–21

    CAS  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD. 2003. Wastewater engineering: treatment and reuse, 4th ed. New York: Metcalff and Eddy Inc., and McGraw-Hill. pp. 1848

  • Townsend SA. 1999. The seasonal pattern of dissolved oxygen, and hypolimnetic deoxygenation, in two tropical Australian reservoirs. Lakes Reserv: Res Manage 4: 41–53

    Article  Google Scholar 

  • Vidal J. 2007. Basin-scale hydrodynamics in a Mediterranean reservoir. Implications for the phytoplankton dynamics. PhD dissertation, Universitat de Girona, Girona. pp. 166

  • Vidal A, Om J. 1993. The eutrophication process in Sau Reservoir (NE Spain): a long-term study. Verh Int Verein Theor Angew Limnol 25: 1247–56

    Google Scholar 

  • Viessman W, Hammer MJ. 1993. Water supply and pollution control, 5th ed. New York: Harper Collins College Publishers. pp. 860

  • Vollenweider RA. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. Publication Number DAS/SAI/68.27. Paris: Organization for Economic Cooperation and Development, Directorate for Scientific Affairs. pp. 250

  • Werner U, Stöhr U, Hees N. 1989. Biogas plants in animal husbandry. Lengerich: Deutsches Zentrum für Entwicklungstechnologien (GTZ). pp. 153

  • Westerhoff P, Anning D. 2000. Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. J Hydrol 236: 202–22

    Article  CAS  Google Scholar 

  • Wetzel RG.1990. Reservoir ecosystems: conclusions and speculations. Thornton KW, Kimmel BL, Payne FE, eds. Reservoir limnology: ecological perspectives. New Jersey: Wiley Interscience. pp. 195–208

  • Wetzel RG. 2001. Limnology. Lake and river ecosystems. 3rd ed. San Diego, CA: Academic Press. pp. 1006

  • Whittemore DO. 2000. Water quality of the Arkansas River in Southwest Kansas. Kansas Geological Survey Open-File Report 2000-44. pp. 74

  • Williams PJ le B, del Giorgio PA. 2005. Respiration in aquatic ecosystems: history and background. del Giorgio PA, Williams PJ le B, eds Respiration in aquatic ecosystems. New York: Oxford University Press. pp. 1–17

Download references

Acknowledgements

Several people contributed during the last decade to the monitoring program in Sau and Foix reservoirs: M. Comerma, J.C. García, M.A. Gallegos, J. Ordóñez, J. Baradad, L. Caputo, D. Balayla, G. González, and C. Cazacu. Andrea Butturini provided valuable comments on chloride dynamics in watersheds, and Joan Lluís Riera gave very useful comments and carefully revised the manuscript. ATLL Water Supply Co. gently provided data, and funds the Sau Reservoir long-term limnological program. R. Marcé gratefully acknowledges a grant from the Ministerio de Educación, Cultura y Deportes (Spain). The University of Granada is also acknowledged for funding the post-doctoral contract of E. Moreno-Ostos. Funding for this research was provided by the Spanish Ministry of Education and Science (Project REN2001-2185-CO2-O2/HID and CGL2004-05503-CO2-01). Comments from two anonymous referees are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Marcé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcé, R., Moreno-Ostos, E., López, P. et al. The Role of Allochthonous Inputs of Dissolved Organic Carbon on the Hypolimnetic Oxygen Content of Reservoirs. Ecosystems 11, 1035–1053 (2008). https://doi.org/10.1007/s10021-008-9177-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9177-5

Keywords

Navigation