Advertisement

Ecosystems

, 10:661 | Cite as

The Role of Urban Structures in the Distribution of Wasteland Flora in the Greater Paris Area, France

  • Audrey Muratet
  • Nathalie Machon
  • Frédéric Jiguet
  • Jacques Moret
  • Emmanuelle Porcher
Article

Abstract

Wastelands are likely to host a significant part of urban floristic diversity but have received limited attention because they are not considered interesting green zones. Here, we explore the potential role of wastelands in maintaining urban biodiversity to help define effective urban management plans. We quantified floristic diversity in 98 wasteland sites of Hauts-de-Seine, one of the most densely populated areas in France, and characterized the environmental parameters and spatial distribution of sites to identify some of the factors that influence plant species composition and to explore the impact of urban environment on the floristic interest of wastelands. Their floristic richness represented 58% of the total richness observed in the whole study area. Site richness depended on site area (the largest sites were the richest) and site age, with a maximum in sites of intermediate age (4–13 years). In the largest sites only (>2,500 m2), the floristic distance among sites was positively correlated with geographic distance, which suggests that migration of species among large sites partly controls local floristic composition. In contrast, the environmental distance among sites was not correlated with floristic distance. Finally, we showed that the presence of collective and individual dwellings within 200 m of a wasteland decreased its floristic rarity, whereas the presence of rivers or ponds increased it. We derive several recommendations to optimize the management of wastelands with respect to conservation of urban biodiversity.

Keywords

Land use pattern Indigeneity Hauts-de-Seine Isolation by distance Plant diversity Rarity Urbanization 

Notes

Acknowledgments

Funding for this research was provided by the Conseil Général des Hauts-de-Seine. We thank Yoann Faivre for his help on the field, Gérard Arnal, Sébastien Filoche and Fabrice Perriat for their help in plant identification and three anonymous reviewers for helpful comments on an earlier version of the manuscript.

References

  1. Conseil Scientifique Régional du Patrimoine Naturel (CSRPN IdF), Direction Régionale de l’Environnement d’Ile-de-France (DIREN IdF). 2002. Guide méthodologique pour la création de Zone Naturelle d’Intérêt Ecologique, Faunistique et Floristique (ZNIEFF) en Ile-de-France. Direction Régionale de l’Environnement d’Ile-de-France, CachanGoogle Scholar
  2. Davis AM, Glick TF. 1978. Urban ecosystems and island biogeography. Environ Conserv 5:299–304CrossRefGoogle Scholar
  3. Ellenberg H. 1979. Indicator values of vascular plants in Central Europe. Scr Geobot 9:7–122Google Scholar
  4. Gödde M, Richarz N, Walter B. 1995. Habitat conservation and the development in the city of Düsseldorf, Germany. In: Sukopp H, Numata M, Huber A, Eds. Urban Ecology as the Basis of Urban Planning. The Hague, SPB Academic Publishers p 163–71Google Scholar
  5. Godefroid S, Monbaliu D, Koedam N. 2007. The role of soil and microclimatic variables in the distribution patterns of urban wasteland flora in Brussels. Belgium, Landscape Urban Plan 80:45–55Google Scholar
  6. Grumbine RE. 1990. Viable populations, reserve size, and federal lands management: a critique. Conserv Biol 4: 127–34CrossRefGoogle Scholar
  7. Harrison C, Davies G. 2002. Conserving biodiversity that matters: practitioners’ perspectives on brownfield development and urban nature conservation in London. J Environ Manage 65:95–108PubMedCrossRefGoogle Scholar
  8. Herbst H, Herbst V. 2006. The development of an evaluation method using a geographic information system to determine the importance of wasteland sites as urban wildlife areas. Landsc Urban Plan 77:178–195CrossRefGoogle Scholar
  9. Horn HS. 1974. The ecology of secondary succession. Annu Rev Ecol Syst 5:25–37CrossRefGoogle Scholar
  10. Hurtt GC, Pacala SW. 1995. The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants. J Theor Biol 176:1–12CrossRefGoogle Scholar
  11. INSEE. 1999. National Institute for Statistics and Economic Studies. http://www.insee.fr
  12. IAURIF. 2003. Institute for Planning and Development of the Paris Ile-de-France Region. http://www.iaurif.org
  13. Kowarik I.1995. Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek P, Prach K, Rejmànek M, Wade M, Eds. Plant Invasions: General aspects and special problems. SPB Academic publishing, Amsterdam, pp. 15–38Google Scholar
  14. MapInfo, MapInfo corporation 2004. MapInfo professional version 7.8Google Scholar
  15. Maurer U, Peschel T, Schmitz S. 2000. The flora of selected urban land-use types in Berlin and Potsdam with regard to nature conservation in cities. Landsc Urban Plan 46:209–215CrossRefGoogle Scholar
  16. McDonnell M., Pickett S., 1990. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71: 1232–1237CrossRefGoogle Scholar
  17. McNally R. 2002. Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401CrossRefGoogle Scholar
  18. Muratet A. 2006. Diversité végétale en milieu urbain. L’exemple des Hauts-de-Seine. PhD-Thesis. University of Paris VI. 121 pGoogle Scholar
  19. Oksanen J, Kindt R, O’Hara RB. 2005. Vegan: community ecology package. R package version 1.6–9Google Scholar
  20. Peet RK, Glenn-Lewin DC, Wolf JW. 1983. Prediction of man’s impact on plant species diversity. In: Holzner W, Werger MJA, Ikusima I, Eds. Man’s impact on vegetation. The Hague: Dr W. Junk Publishers, pp. 1–54Google Scholar
  21. Pysek P. 1998. Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25:155–63CrossRefGoogle Scholar
  22. R Development Core Team. 2005. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical ComputingGoogle Scholar
  23. Rebele F. 1994. Urban ecology and special features of urban ecosystems. Global Ecol Biogeogr 4:173–187CrossRefGoogle Scholar
  24. Rexstad E, Burnham KP. 1991. User’s guide for interactive program CAPTURE. Abundance estimation of closed animal populations. Fort Collins: Colorado State UniversityGoogle Scholar
  25. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity Distribut 6:93CrossRefGoogle Scholar
  26. Sukopp H, Werner P. 1987. Développement de la faune et de la flore en territoire urbain. Strasbourg: Conseil de l’Europe. 61pGoogle Scholar
  27. Thioulouse J, Chessel D, Doledec S, Olivier J-M. 1997. ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  28. Walsh C, MacNally R. 2004. hier.part: Hierarchical Partitioning. Version 1.0.: R packageGoogle Scholar
  29. Whitfield J. 2002. Neutrality versus the niche. Nature 417:480–481PubMedCrossRefGoogle Scholar
  30. Zerbe S, Maurer U, Schmitz S, Sukopp H. 2003. Biodiversity in Berlin and its potential for nature conservation. Landsc Urban Plan 62:139–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Audrey Muratet
    • 1
  • Nathalie Machon
    • 1
    • 2
  • Frédéric Jiguet
    • 2
  • Jacques Moret
    • 1
  • Emmanuelle Porcher
    • 1
    • 2
  1. 1.Conservatoire Botanique National du Bassin ParisienUMS Inventaire et Suivi de la Biodiversité, Muséum National d’Histoire NaturelleParisFrance
  2. 2.UMR 5173, Conservation des Espèces, Restauration et Suivi des Populations, Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations