Ecosystems

, Volume 10, Issue 4, pp 536–549 | Cite as

Hyperspectral Remote Sensing of Canopy Biodiversity in Hawaiian Lowland Rainforests

  • Kimberly M. Carlson
  • Gregory P. Asner
  • R. Flint Hughes
  • Rebecca Ostertag
  • Roberta E. Martin
Article

Abstract

Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawai’i. Hyperspectral signatures spanning the 400–2,500 nm wavelength range acquired by the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) were analyzed at 17 forest sites with species richness values ranging from 1 to 17 species per 0.1–0.3 ha. Spatial variation (range) in the shape of the AVIRIS spectra (derivative reflectance) in wavelength regions associated with upper-canopy pigments, water, and nitrogen content were well correlated with species richness across field sites. An analysis of leaf chlorophyll, water, and nitrogen content within and across species suggested that increasing spectral diversity was linked to increasing species richness by way of increasing biochemical diversity. A linear regression analysis showed that species richness was predicted by a combination of four biochemically-distinct wavelength observations centered at 530, 720, 1,201, and 1,523 nm (r2 = 0.85, p < 0.01). This relationship was used to map species richness at approximately 0.1 ha resolution in lowland forest reserves throughout the study region. Future remote sensing studies of biodiversity will benefit from explicitly connecting chemical and physical properties of the organisms to remotely sensed data.

Keywords

AVIRIS biological diversity Hawai’i imaging spectroscopy leaf pigments 

Supplementary material

References

  1. Asner GP, Elmore AJ, Hughes RF, Warner AS, Vitousek PM. 2005. Ecosystem structure along bioclimatic gradients in Hawaii from imaging spectroscopy. Remote Sens Environ 96:497–508CrossRefGoogle Scholar
  2. Asner GP, Vitousek PM. 2005. Remote analysis of biological invasion and biogeochemical change. Proc Natl Acad Sci USA 102:4383–6PubMedCrossRefGoogle Scholar
  3. Clark M, Roberts DA, Clark DB. 2005. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens Environ 96:375–98CrossRefGoogle Scholar
  4. Cochrane MA. 2000. Using vegetation reflectance variability for species level classification of hyperspectral data. Int J Remote Sens 21: 2075–87CrossRefGoogle Scholar
  5. Cohen WB, Spies T. 1990. Semivariograms of digital imagery for analysis of conifer canopy structure. Remote Sens Environ 34: 167–178CrossRefGoogle Scholar
  6. Curran PJ. 1989. Remote sensing of foliar chemistry. Remote Sens Environ 30:271–8CrossRefGoogle Scholar
  7. Gaston KJ. 2000. Global patterns in biodiversity. Nature 405:220–227PubMedCrossRefGoogle Scholar
  8. Giambelluca TW, Nullet MA, Schroeder TA. 1986. Rainfall atlas of Hawaii. Honolulu (HI): Department of Land and Natural Resources, State of Hawaii. p 267Google Scholar
  9. Givnish TJ. 1999. On the causes of gradients in tropical tree diversity. J Ecol 87: 193–210CrossRefGoogle Scholar
  10. Gotelli NJ, Colwell RK. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4: 379–391CrossRefGoogle Scholar
  11. Gould W. 2000. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol Appl 10:1861–70CrossRefGoogle Scholar
  12. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M, Olah MR, Williams O. 1998. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65:227–248CrossRefGoogle Scholar
  13. Heywood VH, Watson RT, Eds. 1995. Global biodiversity assessment. Cambridge: Cambridge University Press. p 1140Google Scholar
  14. Hughes RF, Denslow JS. 2005. Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecol Appl 15: 1615–28CrossRefGoogle Scholar
  15. Innes JL, Koch B. 1998. Forest biodiversity and its assessment by remote sensing. Glob Ecol Biogeogr Lett 7:397–419Google Scholar
  16. Jacquemoud S, Ustin SL, Verdebout J, Schmuck G, Andreoli G, Hosgood B. 1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens Environ 56: 194–202CrossRefGoogle Scholar
  17. Johnson DDP, Hay SI, Rogers DJ. 1998. Contemporary environmental correlates of endemic bird areas derived from meteorological satellite sensors. Proc R Soc B: Biol Sci 265:951–59CrossRefGoogle Scholar
  18. Lichtenthaler HK. 1987. Chlorophyll and carotenoids: pigments of photosynthetic membranes. Meth Enzymol 148:350–87CrossRefGoogle Scholar
  19. Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. In: Wrolstad RE, Ed. Current protocols in food analytical chemistry. New York: Wiley. pp F4.3.1–F4.3.8Google Scholar
  20. Martin ME, Aber JD. 1997. High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecol Appl 7: 431–43CrossRefGoogle Scholar
  21. McGrew JC, Monroe CB. 2000. An introduction to statistical problem solving in geography. Dubuque (IA): McGraw-Hill. p 264Google Scholar
  22. Moore RB, Trusdell FA. 1991. Geologic map of the lower east rift zone of Kilauea Volcano, Hawaii. U.S. Geologic Quadrangle Map GQ-667, scale 1:24,000Google Scholar
  23. Mueller-Dombois D, Fosberg FR. 1998. Vegetation of the tropical Pacific Islands. New York: Springer. p 733Google Scholar
  24. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca DAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–8PubMedCrossRefGoogle Scholar
  25. Nagendra H. 2001. Using remote sensing to assess biodiversity. Int J Remote Sens 22: 2377–400CrossRefGoogle Scholar
  26. Ollinger SV, Smith ML. 2005. Net primary productivity and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling, and field data. Ecosystems 8:760–78CrossRefGoogle Scholar
  27. Pielou EC. 1966. The measurement of diversity in different types of biological collections. J Theor Biol 13:131–44CrossRefGoogle Scholar
  28. Rahman AF, Gamon JA, Sims DA, Schmidts M. 2003. Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grasslands. Remote Sens Environ 84:192–207CrossRefGoogle Scholar
  29. Roberts DA, Ustin SL, Ogunjemiyo S, Greenberg J, Dobrowski SZ, Chen JQ, Hinckley TM. 2004. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems 7:545–62CrossRefGoogle Scholar
  30. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–4PubMedCrossRefGoogle Scholar
  31. Schlapfer F, Schmid B. 1999. Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecol Appl 9: 893–912CrossRefGoogle Scholar
  32. Siemann E, Tilman D, Haarstad J, Ritchie M. 1998. Experimental test of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750CrossRefGoogle Scholar
  33. Smith CW. 1985. Impact of alien plants on Hawaii’s native biota. Stone CP, Scott JM, Eds. Hawaii’s terrestrial ecosystems: preservation and management. Honolulu: Cooperative National Park Resources Study Unit, University of Hawaii. p 180–250Google Scholar
  34. Townsend PA, Foster JR. 2002. Comparison of EO-1 Hyperion to AVIRIS for mapping forest composition in the Appalachian Mountains, USA. Int Geosci Remote Sens Symp 2:793–5CrossRefGoogle Scholar
  35. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. 2003. Remote sensing for biodiversity and conservation. Trends Ecol Evol 18:306–314CrossRefGoogle Scholar
  36. Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO. 2004. Using imaging spectroscopy to study ecosystem processes and properties. Biol Sci 54:523–534Google Scholar
  37. Vitousek PM. 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57 7–13CrossRefGoogle Scholar
  38. Vitousek PM. 2004. Nutrient cycling and limitation: Hawai’i as a model system. Princeton: Princeton University Press. p 232Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kimberly M. Carlson
    • 1
  • Gregory P. Asner
    • 1
  • R. Flint Hughes
    • 2
  • Rebecca Ostertag
    • 3
  • Roberta E. Martin
    • 1
  1. 1.Department of Global EcologyCarnegie Institution of WashingtonStanfordUSA
  2. 2.Institute for Pacific Islands ForestryUSDA Forest ServiceHawaiiUSA
  3. 3.Department of BiologyUniversity of Hawai’iHawaiiUSA

Personalised recommendations