Ecosystems

, Volume 10, Issue 1, pp 172–185 | Cite as

Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget

  • J. J. Cole
  • Y. T. Prairie
  • N. F. Caraco
  • W. H. McDowell
  • L. J. Tranvik
  • R. G. Striegl
  • C. M. Duarte
  • P. Kortelainen
  • J. A. Downing
  • J. J. Middelburg
  • J. Melack
Article

ABSTRACT

Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.

Keywords

global carbon; freshwater-ecosystems; inland-waters. 

REFERENCES

  1. Aitkenhead JA, McDowell WH. 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem Cycles 14:127–38CrossRefGoogle Scholar
  2. Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M. 2003. The role of lakes for organic carbon cycling in the boreal zone. Global Change Biol 10:141–7CrossRefGoogle Scholar
  3. Algesten G, Wikner J, Sobek S, Tranvik LJ, Jansson M. 2004. Seasonal variation of CO2 saturation in the Gulf of Bothnia: Indications of marine net heterotrophy. Global Biogeochem Cycles 18(4), Art. no. GB4021Google Scholar
  4. Bastviken D, Cole J, Pace M, Tranvik L. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18, Art. no. GB4009Google Scholar
  5. Berner RA. 1993. Weathering and its effect on atmospheric CO2 over phanerozoic time. Chem Geol 107:373–4CrossRefGoogle Scholar
  6. Bertilsson S, Ramunas C, Cuadros-Hansson R, Graneli W, Wikner J, Tranvik L. 1999. Photochemically induced changes in bioavailable carbon and nitrogen pools in a boreal watershed. Aquat Microb Ecol 19:47–56Google Scholar
  7. Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D. 2004. Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem Cycles 18(1), Art. no. GB1024Google Scholar
  8. Bolin B. 1981. Carbon cycle modelling Scope Report no. 16, New York: WileyGoogle Scholar
  9. Borges AV. 2005. Do we have enough pieces of the Jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27Google Scholar
  10. Cai WJ, Wang Y, Krest J, Moore WS. 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim Cosmochim Acta 67:631–7CrossRefGoogle Scholar
  11. Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY. 2000. Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems 3:115–30CrossRefGoogle Scholar
  12. Caraco NF, Cole JJ. 2002. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecol Appl 12:1496–509CrossRefGoogle Scholar
  13. Caraco NF, Cole JJ. 2004. When terrestrial organic matter is sent down the river: importance of allochthonous C inputs to the metabolism in lakes and rivers. In: Polis A, Power ME, Eds. Food webs at the landscape level. Chicago: University of Chicago Press. pp 301–16Google Scholar
  14. Church TM. 1996. An underground route for the water cycle. Science 380:579–80Google Scholar
  15. Clair A, Ehrman JM. 1996. Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. Limnol Oceanogr 41:921–27Google Scholar
  16. Cole JJ, Caraco NF, Kling GW, Kratz TK. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–70CrossRefPubMedGoogle Scholar
  17. Cole JJ, Caraco NF. 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–10CrossRefGoogle Scholar
  18. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–73CrossRefGoogle Scholar
  19. Dai A, Trenberth KE. 2002. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–87CrossRefGoogle Scholar
  20. Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–8CrossRefGoogle Scholar
  21. Degens ET, Kempe S, Richey JE. 1991. Chapter 15, summary: biogeochemistry of major world rivers. In: Degens ET, Kempe S, Richey JE, Eds. Biogeochemistry of major world river. Scope 42, New York: Wiley, pp 323–44Google Scholar
  22. del Giorgio PA, Peters RH. 1994. Patterns in planktonic PR ratios in lakes—influence of lake trophy and dissolved organic-carbon. Limnol Oceanogr 39:772–87CrossRefGoogle Scholar
  23. Dillon PJ, Molot LA. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42CrossRefGoogle Scholar
  24. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr (in press)Google Scholar
  25. Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 1:173–80Google Scholar
  26. Duarte CM, Prairie YT. 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–70CrossRefGoogle Scholar
  27. Einsele G, Yan J, Hinderer M. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Global Planet Change 30:167–95CrossRefGoogle Scholar
  28. Evans CD, Monteith DT, Cooper DM. 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ Pollut 137:55–71PubMedCrossRefGoogle Scholar
  29. Fahey TJ, Siccama TG, Driscoll CT, Likens GE, Campbell J, Johnson CE, Battles JJ, Aber JD, Cole JJ, Fisk MC, Groffman PM, Hamburg SP, Holmes RT, Schwarz PA, Yanai RD. 2005. The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75(1):109–76CrossRefGoogle Scholar
  30. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, MacKenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–6PubMedCrossRefGoogle Scholar
  31. Filippi ML, Talbot MR. 2005. The palaeolimnology of northern Lake Malawi over the last 25 ka based upon the elemental and stable isotopic composition of sedimentary organic matter. Q Sci Rev 24:1303–28CrossRefGoogle Scholar
  32. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10:603–28CrossRefGoogle Scholar
  33. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, DeLille B, Libert E, Theate JM. 1998. Carbon dioxide emission from European estuaries. Science 282:434–6PubMedCrossRefGoogle Scholar
  34. Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–8PubMedCrossRefGoogle Scholar
  35. Gaillardet J, Dupre B, Louvat P, Allegre CJ. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30CrossRefGoogle Scholar
  36. Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA. 2004. A model of carbon evasion and sedimentation in temperate lakes. Global Change Biol 10:1285–98Google Scholar
  37. Harden JW, Sundquist ET, Stallard RF, Mark RK. 1992. Dynamics of soil carbon during deglaciation of the Laurentide ice-sheet. Science 258:1921–4CrossRefPubMedGoogle Scholar
  38. Harrison JA, Caraco N, Seitzinger SP. 2005. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19(4), Art. no. GB4S04Google Scholar
  39. Hem JD. 1985. Study and interpretation of the chemical characteristics of natural water, 3rd edn. United States Geological Survey Water-Supply Paper 2254. p 263Google Scholar
  40. Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D, Walsh J. 2004. Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biol 10:1689–706CrossRefGoogle Scholar
  41. Houghton RA. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biol 9:500–9CrossRefGoogle Scholar
  42. Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V. 2000. Silicon retention in river basins: far reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50CrossRefGoogle Scholar
  43. IPCC. 2001. The carbon cycle and atmospheric carbon dioxide. In: IPCC, Climate Change 2001. Cambridge University Press, Cambridge. pp 183–37Google Scholar
  44. Ittekkot V, Humborg C, Rahm L, Nguyen TA. 2004. Carbon-silicon interactions, chap 17. In: Melillo JM, Field CB, Moldan B, Eds. Scope 61. Interactions of the major biogeochemical cycles: Global change and human impacts, vol 357. Washington DC: Island Press. pp 311–22Google Scholar
  45. IUCN. 2000. Vision for water and nature: a world strategy for conservation and sustainable management of water resources in the 21st century. Cambridge, UK: The World Conservation Union. 58 pGoogle Scholar
  46. Janssens IA. 2003. The European carbon budget: a gap—response. Science 302:1681CrossRefGoogle Scholar
  47. Jones JB, Mulholland PJ. 1998. Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1:183–96CrossRefGoogle Scholar
  48. Jones TH, Thomspon LJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE, Howson G, Jones CG, Kampichler C, Kandeler E, Ritchie DA. 1998. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280:441–3PubMedCrossRefGoogle Scholar
  49. Jones JB, Stanley EH, Mulholland PJ. 2003. Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys Res Lett 30(10), Art. no. 1348Google Scholar
  50. Kauppi PE, Posch M, Hanninen P, Henttonen HM, Ihalainen A, Lappalainen E, Starr M, Tamminen P. 1997. Carbon reservoirs in peatlands and forests in the boreal regions of Finland. Silva Fennica 31:13–25Google Scholar
  51. Kling GW, Kipphut GW, Miller MC. 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301CrossRefPubMedGoogle Scholar
  52. Kortelainen P, Pajunen H, Rantakari M, Saarnisto M. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Global Change Biol 10:1648–53CrossRefGoogle Scholar
  53. Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen PJ 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biol 12:1554–67Google Scholar
  54. Leopold LB, Wolman MG, Miller JP. 1964, 1992. Fluvial processes in geomorphology, 2nd edn. New York: Dover Publishers. 522 ppGoogle Scholar
  55. Liski J, Westman CJ. 1997. Carbon storage in forest soil of Finland II size and regional patterns. Biogeochemistry 36:261–274CrossRefGoogle Scholar
  56. Ludwig W, Probst JL, Kempe S. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–41CrossRefGoogle Scholar
  57. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12CrossRefGoogle Scholar
  58. Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM. 2004. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology 10:530–44CrossRefGoogle Scholar
  59. Meybeck M. 1982. Carbon, nitrogen and phosphorus transported by world rivers. Am J Sci 282:401–50CrossRefGoogle Scholar
  60. Meybeck M. 1993. Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70:443–63CrossRefGoogle Scholar
  61. Molot LA, Dillon PJ. 1996. Storage of terrestrial carbon in lake sediments and evasion to the atmosphere. Global Biogeochem Cycles 10:483–92CrossRefGoogle Scholar
  62. Mulholland P, Elwood JW. 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34:490–9Google Scholar
  63. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292:2316–20PubMedCrossRefGoogle Scholar
  64. Pace ML, Prairie YT. 2005. Respiration in lakes. In: del Giorgio PA, Williams PJ leB, Eds. Respiration in Aquatic systems. Oxford: Oxford University Press. pp 103–121Google Scholar
  65. Parton WJ, Pulliam WM, Ojima DS. 1994. Application of the CENTURY model across the LTR network: parameterization and climate change simulations. Bull Ecol Soc Am 75:186–7Google Scholar
  66. Paterson MJ, Muir DCG, Rosenberg B, Fee EJ, Anema C, Franzlin W. 1998. Does lake size affect concentrations of atmospherically derived polychlorinated biphenyls in water, sediment, zooplankton and fish. Can J Fish Aquat Sci 55:544–53CrossRefGoogle Scholar
  67. Polis A, Power ME, Eds. 2004. Food webs at the landscape level. Chicago: University of Chicago PressGoogle Scholar
  68. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. 1982. Soil carbon pools and world life zones. Nature 298:156–9CrossRefGoogle Scholar
  69. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. 1993. Terrectrial ecosystem production—a process model-based on global satellite and surface data. Global Biogeochem Cycles 7:811–41CrossRefGoogle Scholar
  70. Prairie YT, Bird DF, Cole JJ. 2002. The Summer Metabolic Balance in the Epilimnion of Southeastern Quebec Lakes. Limnol Oceanogr 47:316–21CrossRefGoogle Scholar
  71. Raich JW, Schlesinger WH. 1992. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B Chem Phys Meteorol 44:81–99CrossRefGoogle Scholar
  72. Randerson JR, Chapin FS, Harden JW, Neff JC, Harmon ME. 2002. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecol Appl 12:937–47CrossRefGoogle Scholar
  73. Rantakari M, Kortelainen P. 2005. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Global Change Biol 11:1368–80CrossRefGoogle Scholar
  74. Raymond PA, Cole JJ. 2003. Increase in the export of Alkalinity from North America’s largest river. Science 301:88–91PubMedCrossRefGoogle Scholar
  75. Revelle R, Suess HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27Google Scholar
  76. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–20PubMedCrossRefGoogle Scholar
  77. Roehm, CL. 2005. Respiration in wetland ecosystems. In: del Giorgio PA, Williams PJ, le B, Eds. Respiration in Aquatic systems. Oxford: Oxford University Press. pp 83–102Google Scholar
  78. Roulet NT. 2000. Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada. Wetlands 20:605–15CrossRefGoogle Scholar
  79. Sarmiento JL, Sundquist ET. 1993. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356:589–93CrossRefGoogle Scholar
  80. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–72PubMedCrossRefGoogle Scholar
  81. Schindler JE, Krabbenhoft DP. 1998. The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43:157–74CrossRefGoogle Scholar
  82. Schlesinger WH, Melack JM. 1981. Transport of organic carbon in the world’s rivers. Tellus 33:172–87CrossRefGoogle Scholar
  83. Schlesinger WH. 2005. Biogeochemistry. Boston: Elsevier Press. 702 ppGoogle Scholar
  84. Shibata H, Hiura T, Tanaka Y, Takagi K, Koike T. 2005. Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan. Ecol Res 20:325–31CrossRefGoogle Scholar
  85. Shiklomanov IA, Rodda JC. 2003. World water resources at the beginning of the twenty-first century, international hydrology series. Cambridge: Cambridge University Press. 423 ppGoogle Scholar
  86. Siegenthaler U, Sarmiento JL. 1993. Atmospheric carbon dioxide and the ocean. Nature 365:119–25CrossRefGoogle Scholar
  87. Siemens J. 2003. The European carbon budget: A gap. Science 302:1681PubMedCrossRefGoogle Scholar
  88. Simpkins WW, Parkin TB. 1993. Hydrology and redox geochemistry of CH4 in a late Wisconsonian till and loess sequence in central Iowa. Water Resources Res 29:3643–57CrossRefGoogle Scholar
  89. Slomp CP, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86CrossRefGoogle Scholar
  90. Smith SV, Renwick WH, Buddemeier RW, Crossland CJ. 2001. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem Cycles 15:697–707CrossRefGoogle Scholar
  91. Smith SV, Renwick WH, Bartley JD, Buddemeier RW. 2002. Distribution and significance of small, artificial water bodies across the United States landscape. Sci Total Environ 299:21–36PubMedCrossRefGoogle Scholar
  92. Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenstski KV, Sheng Y. 2004. Siberian peatlands as a net carbon sink and global methane source since the early Holocene. Science 303:353–6PubMedCrossRefGoogle Scholar
  93. Sobek S, Tranvik LJ, Cole JJ. 2005. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochem Cycles 19(2):Art. No. GB2003Google Scholar
  94. Stallard RF. 1998. Terrestrial sedimentation and the C cycle: coupling weathering and erosion to carbon storage. Global Biogeochem Cycles 12:231–7CrossRefGoogle Scholar
  95. St. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–75CrossRefGoogle Scholar
  96. Suchet PA, Probst JL. 1995. A global model for present-day atmospheric/soil CO2- consumption by chemical erosion of continental rocks (GEM-CO2). Tellus 47B:273–280Google Scholar
  97. Sundquist ET. 1993. The global carbon dioxide budget. Science 259:934–35Google Scholar
  98. Taniguchi M, Burnett WC, Cable JE, Turner JV. 2002. Investigation of submarine groundwater discharge. Hydrol Processes 16:2115–29CrossRefGoogle Scholar
  99. Telmer K, Vezier J. 1999. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86CrossRefGoogle Scholar
  100. Tremblay S, Ouimet R, Houle D. 2002. Prediction of organic carbon content in upland forest soils of Quebec, Canada. Can J For Res 32:903–14CrossRefGoogle Scholar
  101. van der Leeden F, Troise FL, Todd DK. 1990. The water encyclopedia. Lewis PublishersGoogle Scholar
  102. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865PubMedCrossRefGoogle Scholar
  103. Wilcock RJ, Champion PD, Nagels JW, Croker GF. 1999. The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream. Hydrobiology 416:203–14CrossRefGoogle Scholar
  104. Zhao MS, Heinsch FA, Nemani RR, Running SW. 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. J. Cole
    • 1
  • Y. T. Prairie
    • 2
  • N. F. Caraco
    • 1
  • W. H. McDowell
    • 3
  • L. J. Tranvik
    • 4
  • R. G. Striegl
    • 5
  • C. M. Duarte
    • 6
  • P. Kortelainen
    • 7
  • J. A. Downing
    • 8
  • J. J. Middelburg
    • 9
  • J. Melack
    • 10
  1. 1.Institute of Ecosystem StudiesMillbrookUSA
  2. 2.Département des Sciences biologiquesUniversité du Québec à MontréalMontrealCanada
  3. 3.Department of Natural ResourcesUniversity of New HampshireDurhamUSA
  4. 4.Limnology, Department of Ecology and Evolution, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  5. 5.United States Geological SurveyNational Research ProgramDenverUSA
  6. 6.IMEDEA (CSIC-UIB)Esporles Islas BalearesSpain
  7. 7.Finnish Environment InstituteHelsinkiFinland
  8. 8.Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesUSA
  9. 9.Netherlands Institute of EcologyCenter for Estuarine and Marine EcologyYersekeThe Netherlands
  10. 10.Donald Bren School of Environmental Science & ManagementUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations