Ecosystems

, Volume 9, Issue 3, pp 330–343 | Cite as

Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland

  • Christof Bigler
  • Otto Ulrich Bräker
  • Harald Bugmann
  • Matthias Dobbertin
  • Andreas Rigling
Article

Abstract

During the 20th century, high mortality rates of Scots pine (Pinus silvestris L.) have been observed over large areas in the Rhône valley (Valais, Switzerland) and in other dry valleys of the European Alps. In this study, we evaluated drought as a possible inciting factor of Scots pine decline in the Valais. Averaged tree-ring widths, standardized tree-ring series, and estimated annual mortality risks were related to a drought index. Correlations between drought indices and standardized tree-ring series from 11 sites showed a moderate association. Several drought years and drought periods could be detected since 1864 that coincided with decreased growth. Although single, extreme drought years had generally a short-term, reversible effect on tree growth, multi-year drought initiated prolonged growth decreases that increased a tree’s long-term risk of death. Tree death occurred generally several years or even decades after the drought. In conclusion, drought has a limiting effect on tree growth and acts as a bottleneck event in triggering Scots pine decline in the Valais.

Keywords

drought tree mortality Scots pine (Pinus silvestris L.) air pollution mortality risk statistical models tree rings climate competition 

References

  1. Aiba SI, Kitayama K (2002) Effects of the 1997–98 El Niño drought on rain forests of Mount Kinabalu, Borneo. Trop Eco 18:215–30Google Scholar
  2. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB. (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16CrossRefGoogle Scholar
  3. Berryman AA (1982) Biological control, thresholds, and pest outbreaks. Environ Entomol 11:544–9Google Scholar
  4. Berryman AA (1989) Forest insects: principles and practice of population management. Plenum Press, New York, p 279Google Scholar
  5. Bigler C, Bugmann H (2003) Growth–dependent tree mortality models based on tree rings. Can J For Res 33:210–21CrossRefGoogle Scholar
  6. Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–14Google Scholar
  7. Bigler C, Gricar J, Bugmann H, Cufar K (2004) Growth patterns as indicators of impending tree death in silver fir. For Ecol Manage 199:183–90Google Scholar
  8. Biocca M, Tainter FH, Starkey DA, Oak SW, Williams JG (1993) The persistence of oak decline in the western North Carolina Nantahala Mountains. Castanea 58:543–57Google Scholar
  9. Bolay A, Bovay E (1965) Observations sur la sensibilité aux gaz fluorés de quelques espèces végétales du Valais. Phytopathologische Zeitschrift 53:289–98Google Scholar
  10. Bugmann H, Cramer W (1998) Improving the behaviour of forest gap models along drought gradients. For Ecol Manage 103:247–63CrossRefGoogle Scholar
  11. Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P, Innes JL (2002) Tree–life history prior to death: two fungal root pathogens affect tree–ring growth differently. J Ecol 90:839–50CrossRefGoogle Scholar
  12. Clark JS, Grimm EC, Donovan JJ, Fritz SC, Engstrom DR, Almendinger JE (2002) Drought cycles and landscape responses to past aridity on prairies of the northern Great Plains, USA. Ecology 83:595–601Google Scholar
  13. Clements JR (1969) Shoot response to watering applied over two seasons. Can J Bot 48:75–80Google Scholar
  14. Clinton BD, Boring LR, Swank WT (1993) Canopy gap characteristics and drought influences in oak forests of the Coweeta basin. Ecology 74:1551–8Google Scholar
  15. Cobb NS, Mopper S, Gehring CA, Caouette M, Christensen KM, Whitham TG (1997) Increased moth herbivory associated with environmental stress of pinyon pine at local and regional levels. Oecologia 109:389–97CrossRefGoogle Scholar
  16. Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–39Google Scholar
  17. Cook E, Briffa K, Shiyatov S, Mazepa V (1990) Tree–ring standardization and growth–trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic, Dordrecht p 104–23Google Scholar
  18. Cook E, Holmes RL. 1984. Users manual for Program ARSTAN. Tucson, Arizona, USA: Laboratory of Tree-Ring ResearchGoogle Scholar
  19. Croisé L, Lieutier F (1993) Effects of drought on the induced defence reaction of Scots pine to bark beetle–associated fungi. Annales des Sciences Forestières 50:91–7Google Scholar
  20. Czokajlo D, Wink RA, Warren JC, Teale SA (1997) Growth reduction of Scots pine, Pinus sylvestris, caused by the larger pine shoot beetle, Tomicus piniperda (Coleoptera, Scolytidae), in New York State. Can J For Res 27:1394–7CrossRefGoogle Scholar
  21. de Groot P, Turgeon JJ (1998) Insect–pine interactions. In: Richardson DM (eds) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge pp 354–80Google Scholar
  22. Dobbertin M, Brang P (2001) Crown defoliation improves tree mortality models. For Ecol Manage 141:271–84CrossRefGoogle Scholar
  23. Dobbertin M, Hilker N, Rebetez M, Zimmermann NE, Wohlgemoth T, Rigling A. 2005. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland – the result of climate warming? Int J Biometeorol 50:40–7CrossRefPubMedGoogle Scholar
  24. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5th edn. Stuttgart, Ulmer. p 1096Google Scholar
  25. Elliott KJ, Swank WT (1994) Impacts of drought on tree mortality and growth in a mixed hardwood forest. J Veg Sci 5:229–36Google Scholar
  26. Ennos AR (1997) Wind as an ecological factor. Trends Ecol Evol 12:108–11Google Scholar
  27. Faes H (1921) Les dommages causés aux cultures par les usines d’Eléctro–chimie. Librairie Payot, Lausanne p 107Google Scholar
  28. Flühler H (1981) Waldschäden im Walliser Rhonetal (Schweiz). Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen 57:361–499Google Scholar
  29. Flühler H (1983) Longtermed fluoride pollution of a forest ecosystem: time, the dimension of pitfalls and limitations. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. D. Reidel Publishing Company, Dordrecht, p 303–17Google Scholar
  30. Flühler H, Keller T, Schwager H (1981) Die Immissionsbelastung der Föhrenwälder im Walliser Rhonetal. Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen 57:399–414Google Scholar
  31. Fritts HC (1976) Tree rings and climate. Academic Press, London p 567Google Scholar
  32. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Quart Rev Biol 67:283–335CrossRefGoogle Scholar
  33. Hill G (1993) Untersuchungen über den Einfluss des Witterungsverlaufes auf Absterbevorgänge in älteren Kiefernbeständen (Pinus sylvestris L.). Forstarchiv 64:3–9Google Scholar
  34. Houston DR (1984) Stress related to diseases. Arboricult J 8:137–49Google Scholar
  35. Innes JL (1993) Forest health: its assessment and status. CAB International, Wallingford, Oxon, UK p 656Google Scholar
  36. Innes JL (1998) The impact of climatic extremes on forests: an introduction. In: Beniston M, Innes JL (eds) The impacts of climate variability on forests. Springer, Berlin Heidelberg, NewYork, p 1–18Google Scholar
  37. Irvine J, Perks MP, Magnani F, Grace J (1998) The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol 18:393–402PubMedGoogle Scholar
  38. Jenkins MA, Pallardy SG (1995) The influence of drought on red oak group species growth and mortality in the Missouri Ozarks. Can J For Res 25:1119–27Google Scholar
  39. Kienast F. 1985a. Dendroökologische Untersuchungen an Höhenprofilen aus verschiedenen Klimabereichen. Inaugural-Dissertation. Zürich: University of ZürichGoogle Scholar
  40. Kienast F (1985b) Tree ring analysis, forest damage and air pollution in the Swiss Rhône Valley. Land Use Policy 2:74–7CrossRefGoogle Scholar
  41. Kienast F, Flühler H, Schweingruber FH (1981) Jahrringanalysen an Föhren (Pinus silvestris L.) aus immissionsgefährdeten Beständen des Mittelwallis (Saxon, Schweiz). Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen 57:415–32Google Scholar
  42. Kienast F, Hadorn S, Schütz M. (2004) Werden Walliser Föhrenwälder zu Eichenwäldern? Eine pflanzensoziologische Studie mit historischen Aufnahmen. Informationsblatt Forschungsbereich Landschaft WSL 59:1–3Google Scholar
  43. Kontic R, Niederer M, Nippel C–A, Winkler–Seifert A (1986) Jahrringanalysen an Nadelbäumen zur Darstellung und Interpretation von Waldschäden (Wallis, Schweiz). Eidgenössische Anstalt für das Forstliche Versuchswesen, Birmensdorf p 46 Google Scholar
  44. LeBlanc DC (1998) Interactive effects of acidic deposition, drought, and insect attack on oak populations in the midwestern United States. Can J Forest Res 28:1184–97Google Scholar
  45. Lingg W (1986) Dendroökologische Studien an Nadelbäumen im alpinen Trockental Wallis (Schweiz) 287. Berichte der Eidgenössischen Anstalt für das forstliche Versuchswesen, BirmensdorfGoogle Scholar
  46. Loehle C (1988) Tree life history strategies: the role of defenses. Can J For Res 18:209–22Google Scholar
  47. Lumley T, Heagerty P (1999) Weighted empirical adaptive variance estimators for correlated data regression. J Roy Stat Soci Sers B (Stat Methodol) 61:459–77Google Scholar
  48. Manion PD (1981) Tree disease concepts. Prentice–Hall, Englewood Cliffs (NJ) p 409Google Scholar
  49. Martínez-Vilalta J, Piñol J. 2002. Drought–induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–56CrossRefGoogle Scholar
  50. Martínez-Vilalta J, Sala A, Piñol J (2004) The hydraulic architecture of Pinaceae–a review. Plant Ecol 171:3–13Google Scholar
  51. Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–8Google Scholar
  52. Oberhuber W (2001) The role of climate in the mortality of Scots pine (Pinus sylvestris L.) exposed to soil dryness. Dendrochronologia 19:45–55Google Scholar
  53. Ogle K, Whitham TG, Cobb NS (2000) Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecol 81:3237–43Google Scholar
  54. Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, NewYork p 520Google Scholar
  55. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–84CrossRefGoogle Scholar
  56. Pedersen BS (1998a) Modeling tree mortality in response to short- and long-term environmental stresses. Ecol Modell 105:347–51CrossRefGoogle Scholar
  57. Pedersen BS (1998b) The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death. Ecology 79:79–93CrossRefGoogle Scholar
  58. Pedersen BS (1999) The mortality of midwestern overstory oaks as a bioindicator of environmental stress. Ecol Appl 9:1017–27Google Scholar
  59. Peet RK, Christensen NL (1987) Competition and tree death. Bioscience 37:586–95Google Scholar
  60. Piñol J, Sala A (2000) Ecological implications of xylem embolism for several Pineaceae in the Pacific Northern USA. Funct Ecol 14:538–545Google Scholar
  61. Plumettaz Clot A-C. 1988. Phyto-écologie des pinèdes valaisannes et contribution à la taxonomie du genre pinus. Ph.D. thesis. Lausanne: University of LausanneGoogle Scholar
  62. Pouttu A, Dobbertin M (2000) Needle retention and density patterns in Pinus sylvestris in the Rhone Valley of Switzerland: comparing results of the needle-trace method with visual defoliation assessments. Can J For Res 30:1973–82CrossRefGoogle Scholar
  63. R Development Core Team (2003) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  64. Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9CrossRefGoogle Scholar
  65. Richardson DM, Rundel PW. 1998 Ecology and biogeography of Pinus: In: Richardson DM, Ed. Ecology and biogeography of Pinus. Cambridge: Cambridge University Press, p 3–46Google Scholar
  66. Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–21CrossRefGoogle Scholar
  67. Rigling A, Brühlhart H, Bräker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manage 175:285–96CrossRefGoogle Scholar
  68. Rigling A, Cherubini P (1999) Wieso sterben die Waldföhren im “Telwald” bei Visp? Eine Zusammenfassung bisheriger Studien und eine dendroökologische Untersuchung. Schweizerische Zeitschrift für Forstwesen 150:113–31Google Scholar
  69. Rigling A, Forster B, Wermelinger B, Cherubini P (1999) Grossflächige Veränderungen des Landschaftsbildes im Kanton Wallis - Waldföhrenbestände im Umbruch. Wald und Holz 80:8–12Google Scholar
  70. Rigling A, Waldner PO, Forster T, Bräker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res 31:18–31CrossRefGoogle Scholar
  71. Rigling A, Weber P, Cherubini P, Dobbertin M (2004) Bestandesdynamik zentralalpiner Waldföhrenwälder aufgezeigt anhand dendroökologischer Fallstudien aus dem Wallis, Schweiz. Schweizerische Zeitschrift für Forstwesen 155:178–90Google Scholar
  72. Rinn F (1996) TSAP-reference manual. Rinntech, HeidelbergGoogle Scholar
  73. Rutherford TA, Webster JM (1987) Distribution of pine wilt disease with respect to temperature in North America, Japan, and Europe. Can J For Res 17:1050–9Google Scholar
  74. Sinclair WA. 1967. Decline of hardwoods: possible causes. In: International shade tree conference, p 17–32Google Scholar
  75. Solberg S (1999) Crown condition and growth relationships within stands of Picea abies. Scand J For Res 14:320–7CrossRefGoogle Scholar
  76. Stringer JW, Kimmerer TW, Overstreet JC, Dunn JP (1989) Oak mortality in eastern Kentucky. South J Appl For 13:86–91Google Scholar
  77. Tainter FH, Fraedrich SW, Benson DM (1984) The effect of climate on growth, decline, and death of northern red oaks in the western North Carolina Nantahala Mountains. Castanea 49:127–37Google Scholar
  78. Telewski FW (1995) Wind-induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge p 237–63Google Scholar
  79. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94Google Scholar
  80. Vertui F, Tagliaferro F (1998) Scots pine (Pinus sylvestris L.) die-back by unknown causes in the Aosta Valley, Italy. Chemosphere 36:1061–5CrossRefGoogle Scholar
  81. Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology 79:2624–40Google Scholar
  82. Wille F (1922) Die Rauchschadenfrage der Aluminiumfabriken mit besonderer Berücksichtigung der Aluminiumfabrik Chippis. Parey, Berlin p 66Google Scholar
  83. Zar JH (1999) Biostatistical analysis. 4th edition. Prentice-Hall, Upper Saddle River, New Jersey p 663Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Christof Bigler
    • 1
    • 2
  • Otto Ulrich Bräker
    • 3
  • Harald Bugmann
    • 1
  • Matthias Dobbertin
    • 3
    • 4
  • Andreas Rigling
    • 3
  1. 1.Forest Ecology, Department of Environmental SciencesSwiss Federal Institute of Technology (ETH)ZürichSwitzerland
  2. 2.Department of GeographyUniversity of ColoradoBoulderUSA
  3. 3.Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
  4. 4.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations