Skip to main content
Log in

Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

During the 20th century, high mortality rates of Scots pine (Pinus silvestris L.) have been observed over large areas in the Rhône valley (Valais, Switzerland) and in other dry valleys of the European Alps. In this study, we evaluated drought as a possible inciting factor of Scots pine decline in the Valais. Averaged tree-ring widths, standardized tree-ring series, and estimated annual mortality risks were related to a drought index. Correlations between drought indices and standardized tree-ring series from 11 sites showed a moderate association. Several drought years and drought periods could be detected since 1864 that coincided with decreased growth. Although single, extreme drought years had generally a short-term, reversible effect on tree growth, multi-year drought initiated prolonged growth decreases that increased a tree’s long-term risk of death. Tree death occurred generally several years or even decades after the drought. In conclusion, drought has a limiting effect on tree growth and acts as a bottleneck event in triggering Scots pine decline in the Valais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aiba SI, Kitayama K (2002) Effects of the 1997–98 El Niño drought on rain forests of Mount Kinabalu, Borneo. Trop Eco 18:215–30

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB. (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Berryman AA (1982) Biological control, thresholds, and pest outbreaks. Environ Entomol 11:544–9

    Google Scholar 

  • Berryman AA (1989) Forest insects: principles and practice of population management. Plenum Press, New York, p 279

    Google Scholar 

  • Bigler C, Bugmann H (2003) Growth–dependent tree mortality models based on tree rings. Can J For Res 33:210–21

    Article  Google Scholar 

  • Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–14

    Google Scholar 

  • Bigler C, Gricar J, Bugmann H, Cufar K (2004) Growth patterns as indicators of impending tree death in silver fir. For Ecol Manage 199:183–90

    Google Scholar 

  • Biocca M, Tainter FH, Starkey DA, Oak SW, Williams JG (1993) The persistence of oak decline in the western North Carolina Nantahala Mountains. Castanea 58:543–57

    Google Scholar 

  • Bolay A, Bovay E (1965) Observations sur la sensibilité aux gaz fluorés de quelques espèces végétales du Valais. Phytopathologische Zeitschrift 53:289–98

    CAS  Google Scholar 

  • Bugmann H, Cramer W (1998) Improving the behaviour of forest gap models along drought gradients. For Ecol Manage 103:247–63

    Article  Google Scholar 

  • Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P, Innes JL (2002) Tree–life history prior to death: two fungal root pathogens affect tree–ring growth differently. J Ecol 90:839–50

    Article  Google Scholar 

  • Clark JS, Grimm EC, Donovan JJ, Fritz SC, Engstrom DR, Almendinger JE (2002) Drought cycles and landscape responses to past aridity on prairies of the northern Great Plains, USA. Ecology 83:595–601

    Google Scholar 

  • Clements JR (1969) Shoot response to watering applied over two seasons. Can J Bot 48:75–80

    Google Scholar 

  • Clinton BD, Boring LR, Swank WT (1993) Canopy gap characteristics and drought influences in oak forests of the Coweeta basin. Ecology 74:1551–8

    Google Scholar 

  • Cobb NS, Mopper S, Gehring CA, Caouette M, Christensen KM, Whitham TG (1997) Increased moth herbivory associated with environmental stress of pinyon pine at local and regional levels. Oecologia 109:389–97

    Article  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–39

    Google Scholar 

  • Cook E, Briffa K, Shiyatov S, Mazepa V (1990) Tree–ring standardization and growth–trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic, Dordrecht p 104–23

    Google Scholar 

  • Cook E, Holmes RL. 1984. Users manual for Program ARSTAN. Tucson, Arizona, USA: Laboratory of Tree-Ring Research

  • Croisé L, Lieutier F (1993) Effects of drought on the induced defence reaction of Scots pine to bark beetle–associated fungi. Annales des Sciences Forestières 50:91–7

    Google Scholar 

  • Czokajlo D, Wink RA, Warren JC, Teale SA (1997) Growth reduction of Scots pine, Pinus sylvestris, caused by the larger pine shoot beetle, Tomicus piniperda (Coleoptera, Scolytidae), in New York State. Can J For Res 27:1394–7

    Article  Google Scholar 

  • de Groot P, Turgeon JJ (1998) Insect–pine interactions. In: Richardson DM (eds) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge pp 354–80

    Google Scholar 

  • Dobbertin M, Brang P (2001) Crown defoliation improves tree mortality models. For Ecol Manage 141:271–84

    Article  Google Scholar 

  • Dobbertin M, Hilker N, Rebetez M, Zimmermann NE, Wohlgemoth T, Rigling A. 2005. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland – the result of climate warming? Int J Biometeorol 50:40–7

    Article  PubMed  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5th edn. Stuttgart, Ulmer. p 1096

    Google Scholar 

  • Elliott KJ, Swank WT (1994) Impacts of drought on tree mortality and growth in a mixed hardwood forest. J Veg Sci 5:229–36

    Google Scholar 

  • Ennos AR (1997) Wind as an ecological factor. Trends Ecol Evol 12:108–11

    Google Scholar 

  • Faes H (1921) Les dommages causés aux cultures par les usines d’Eléctro–chimie. Librairie Payot, Lausanne p 107

    Google Scholar 

  • Flühler H (1981) Waldschäden im Walliser Rhonetal (Schweiz). Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen 57:361–499

    Google Scholar 

  • Flühler H (1983) Longtermed fluoride pollution of a forest ecosystem: time, the dimension of pitfalls and limitations. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. D. Reidel Publishing Company, Dordrecht, p 303–17

    Google Scholar 

  • Flühler H, Keller T, Schwager H (1981) Die Immissionsbelastung der Föhrenwälder im Walliser Rhonetal. Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen 57:399–414

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London p 567

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Quart Rev Biol 67:283–335

    Article  Google Scholar 

  • Hill G (1993) Untersuchungen über den Einfluss des Witterungsverlaufes auf Absterbevorgänge in älteren Kiefernbeständen (Pinus sylvestris L.). Forstarchiv 64:3–9

    Google Scholar 

  • Houston DR (1984) Stress related to diseases. Arboricult J 8:137–49

    Google Scholar 

  • Innes JL (1993) Forest health: its assessment and status. CAB International, Wallingford, Oxon, UK p 656

    Google Scholar 

  • Innes JL (1998) The impact of climatic extremes on forests: an introduction. In: Beniston M, Innes JL (eds) The impacts of climate variability on forests. Springer, Berlin Heidelberg, NewYork, p 1–18

    Google Scholar 

  • Irvine J, Perks MP, Magnani F, Grace J (1998) The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol 18:393–402

    PubMed  Google Scholar 

  • Jenkins MA, Pallardy SG (1995) The influence of drought on red oak group species growth and mortality in the Missouri Ozarks. Can J For Res 25:1119–27

    Google Scholar 

  • Kienast F. 1985a. Dendroökologische Untersuchungen an Höhenprofilen aus verschiedenen Klimabereichen. Inaugural-Dissertation. Zürich: University of Zürich

  • Kienast F (1985b) Tree ring analysis, forest damage and air pollution in the Swiss Rhône Valley. Land Use Policy 2:74–7

    Article  Google Scholar 

  • Kienast F, Flühler H, Schweingruber FH (1981) Jahrringanalysen an Föhren (Pinus silvestris L.) aus immissionsgefährdeten Beständen des Mittelwallis (Saxon, Schweiz). Mitteilungen der Eidgenössischen Anstalt für das Forstliche Versuchswesen 57:415–32

    Google Scholar 

  • Kienast F, Hadorn S, Schütz M. (2004) Werden Walliser Föhrenwälder zu Eichenwäldern? Eine pflanzensoziologische Studie mit historischen Aufnahmen. Informationsblatt Forschungsbereich Landschaft WSL 59:1–3

    Google Scholar 

  • Kontic R, Niederer M, Nippel C–A, Winkler–Seifert A (1986) Jahrringanalysen an Nadelbäumen zur Darstellung und Interpretation von Waldschäden (Wallis, Schweiz). Eidgenössische Anstalt für das Forstliche Versuchswesen, Birmensdorf p 46

    Google Scholar 

  • LeBlanc DC (1998) Interactive effects of acidic deposition, drought, and insect attack on oak populations in the midwestern United States. Can J Forest Res 28:1184–97

    Google Scholar 

  • Lingg W (1986) Dendroökologische Studien an Nadelbäumen im alpinen Trockental Wallis (Schweiz) 287. Berichte der Eidgenössischen Anstalt für das forstliche Versuchswesen, Birmensdorf

    Google Scholar 

  • Loehle C (1988) Tree life history strategies: the role of defenses. Can J For Res 18:209–22

    Google Scholar 

  • Lumley T, Heagerty P (1999) Weighted empirical adaptive variance estimators for correlated data regression. J Roy Stat Soci Sers B (Stat Methodol) 61:459–77

    Google Scholar 

  • Manion PD (1981) Tree disease concepts. Prentice–Hall, Englewood Cliffs (NJ) p 409

    Google Scholar 

  • Martínez-Vilalta J, Piñol J. 2002. Drought–induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–56

    Article  Google Scholar 

  • Martínez-Vilalta J, Sala A, Piñol J (2004) The hydraulic architecture of Pinaceae–a review. Plant Ecol 171:3–13

    Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–8

    Google Scholar 

  • Oberhuber W (2001) The role of climate in the mortality of Scots pine (Pinus sylvestris L.) exposed to soil dryness. Dendrochronologia 19:45–55

    Google Scholar 

  • Ogle K, Whitham TG, Cobb NS (2000) Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecol 81:3237–43

    Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, NewYork p 520

    Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–84

    Article  Google Scholar 

  • Pedersen BS (1998a) Modeling tree mortality in response to short- and long-term environmental stresses. Ecol Modell 105:347–51

    Article  Google Scholar 

  • Pedersen BS (1998b) The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death. Ecology 79:79–93

    Article  Google Scholar 

  • Pedersen BS (1999) The mortality of midwestern overstory oaks as a bioindicator of environmental stress. Ecol Appl 9:1017–27

    Google Scholar 

  • Peet RK, Christensen NL (1987) Competition and tree death. Bioscience 37:586–95

    Google Scholar 

  • Piñol J, Sala A (2000) Ecological implications of xylem embolism for several Pineaceae in the Pacific Northern USA. Funct Ecol 14:538–545

    Google Scholar 

  • Plumettaz Clot A-C. 1988. Phyto-écologie des pinèdes valaisannes et contribution à la taxonomie du genre pinus. Ph.D. thesis. Lausanne: University of Lausanne

  • Pouttu A, Dobbertin M (2000) Needle retention and density patterns in Pinus sylvestris in the Rhone Valley of Switzerland: comparing results of the needle-trace method with visual defoliation assessments. Can J For Res 30:1973–82

    Article  Google Scholar 

  • R Development Core Team (2003) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9

    Article  Google Scholar 

  • Richardson DM, Rundel PW. 1998 Ecology and biogeography of Pinus: In: Richardson DM, Ed. Ecology and biogeography of Pinus. Cambridge: Cambridge University Press, p 3–46

    Google Scholar 

  • Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–21

    Article  Google Scholar 

  • Rigling A, Brühlhart H, Bräker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manage 175:285–96

    Article  Google Scholar 

  • Rigling A, Cherubini P (1999) Wieso sterben die Waldföhren im “Telwald” bei Visp? Eine Zusammenfassung bisheriger Studien und eine dendroökologische Untersuchung. Schweizerische Zeitschrift für Forstwesen 150:113–31

    Google Scholar 

  • Rigling A, Forster B, Wermelinger B, Cherubini P (1999) Grossflächige Veränderungen des Landschaftsbildes im Kanton Wallis - Waldföhrenbestände im Umbruch. Wald und Holz 80:8–12

    Google Scholar 

  • Rigling A, Waldner PO, Forster T, Bräker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res 31:18–31

    Article  Google Scholar 

  • Rigling A, Weber P, Cherubini P, Dobbertin M (2004) Bestandesdynamik zentralalpiner Waldföhrenwälder aufgezeigt anhand dendroökologischer Fallstudien aus dem Wallis, Schweiz. Schweizerische Zeitschrift für Forstwesen 155:178–90

    Google Scholar 

  • Rinn F (1996) TSAP-reference manual. Rinntech, Heidelberg

    Google Scholar 

  • Rutherford TA, Webster JM (1987) Distribution of pine wilt disease with respect to temperature in North America, Japan, and Europe. Can J For Res 17:1050–9

    Google Scholar 

  • Sinclair WA. 1967. Decline of hardwoods: possible causes. In: International shade tree conference, p 17–32

  • Solberg S (1999) Crown condition and growth relationships within stands of Picea abies. Scand J For Res 14:320–7

    Article  Google Scholar 

  • Stringer JW, Kimmerer TW, Overstreet JC, Dunn JP (1989) Oak mortality in eastern Kentucky. South J Appl For 13:86–91

    Google Scholar 

  • Tainter FH, Fraedrich SW, Benson DM (1984) The effect of climate on growth, decline, and death of northern red oaks in the western North Carolina Nantahala Mountains. Castanea 49:127–37

    Google Scholar 

  • Telewski FW (1995) Wind-induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge p 237–63

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Google Scholar 

  • Vertui F, Tagliaferro F (1998) Scots pine (Pinus sylvestris L.) die-back by unknown causes in the Aosta Valley, Italy. Chemosphere 36:1061–5

    Article  CAS  Google Scholar 

  • Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology 79:2624–40

    Google Scholar 

  • Wille F (1922) Die Rauchschadenfrage der Aluminiumfabriken mit besonderer Berücksichtigung der Aluminiumfabrik Chippis. Parey, Berlin p 66

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. 4th edition. Prentice-Hall, Upper Saddle River, New Jersey p 663

    Google Scholar 

Download references

Acknowledgements

We would like to thank Bärbel Zierl (Forest Ecology, Zürich, Switzerland) and Esther Hegglin (Zug, Switzerland) for their support in the field. We are also indebted to Felix Kienast and Fritz Schweingruber (both WSL, Birmensdorf, Switzerland) for use of their tree-ring data. Thanks are due to Ludger Wenzelides (Forest Ecology, Zürich, Switzerland) for creating the GIS map, to Thomas Wohlgemuth (WSL, Birmensdorf, Switzerland) for his helpful comments on an earlier version of the manuscript, and to Rosemary Sherriff (University of Colorado, Boulder, USA) for improving the language of the manuscript. We would also like to thank the Seminar for Statistics (ETH, Zürich, Switzerland) for statistical advice. We appreciate helpful comments from two anonymous reviewers and the editor. Finally, we are grateful to the Forest Service of the canton of Valais for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Bigler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigler, C., Bräker, O.U., Bugmann, H. et al. Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems 9, 330–343 (2006). https://doi.org/10.1007/s10021-005-0126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0126-2

Keywords

Navigation