Ecosystems

, Volume 9, Issue 7, pp 1041–1050 | Cite as

Reconciling Carbon-cycle Concepts, Terminology, and Methods

  • F. S. ChapinIII
  • G. M. Woodwell
  • J. T. Randerson
  • E. B. Rastetter
  • G. M. Lovett
  • D. D. Baldocchi
  • D. A. Clark
  • M. E. Harmon
  • D. S. Schimel
  • R. Valentini
  • C. Wirth
  • J. D. Aber
  • J. J. Cole
  • M. L. Goulden
  • J. W. Harden
  • M. Heimann
  • R. W. Howarth
  • P. A. Matson
  • A. D. McGuire
  • J. M. Melillo
  • H. A. Mooney
  • J. C. Neff
  • R. A. Houghton
  • M. L. Pace
  • M. G. Ryan
  • S. W. Running
  • O. E. Sala
  • W. H. Schlesinger
  • E.-D. Schulze
Article

Abstract

Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by scientists to represent two different concepts. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER). We further propose that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from [negative sign]) ecosystems. Net ecosystem carbon balance differs from NEP when C fluxes other than C fixation and respiration occur, or when inorganic C enters or leaves in dissolved form. These fluxes include the leaching loss or lateral transfer of C from the ecosystem; the emission of volatile organic C, methane, and carbon monoxide; and the release of soot and CO2 from fire. Carbon fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to the measurement of C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we can provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle.

Keywords

net ecosystem production net ecosystem carbon balance gross primary production ecosystem respiration autotrophic respiration heterotrophic respiration net ecosystem exchange net biome production net primary production 

References

  1. Aber JD, Melillo JM. 1991. Terrestrial ecosystems. Orlando (FL): Saunders College PublishingGoogle Scholar
  2. Aber JD, Melillo JM. 2001. Terrestrial ecosystems. 2nd ed. San Diego (CA): Harcourt–Academic PressGoogle Scholar
  3. Andrews JA, Schlesinger WH. 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem Cycles 15:149–62CrossRefGoogle Scholar
  4. Aubinet M, Heinesch B, Yernaux M. 2003. Horizontal and vertical CO2 advection in a sloping forest. Boundary Layer Meteorol 108:397–417CrossRefGoogle Scholar
  5. Aumont O, Orr JC, Monfray P, Ludwig W, Amiotte-Suchet P, Probst J-L. 2001. Riverine-driven interhemispheric transport of carbon. Global Biogeochemical Cycles 15:393–405CrossRefGoogle Scholar
  6. Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–92CrossRefGoogle Scholar
  7. Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans PP. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–6PubMedCrossRefGoogle Scholar
  8. Chapin FS III, Matson PA, Mooney HA. 2002. Principles of terrestrial ecosystem ecology. New York: Springer-VerlagGoogle Scholar
  9. Ciais P, Janssens J, Shvidenko A, Wirth C, Malhi Y, Grave J, Schulze E-D, Heimann M, Phillips O, Dolman AJ. 2005. The potential for rising CO2 to account for the observed uptake of carbon by tropical, temperate and boreal forest biomes. Griffith H, Jarvis P, editors. The Carbon Balance of Forest Biomes. Milton Park, UK: Taylor and Francis. p 109–150Google Scholar
  10. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J. 2001. Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–70Google Scholar
  11. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–7PubMedCrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113:53–74CrossRefGoogle Scholar
  13. Fisher SG, Likens GE. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–39CrossRefGoogle Scholar
  14. Fung IY, Doney SC, Lindsay K, John J. 2005. Evolution of carbon sinks in a changing climate. Proc Nat’l Acad Sci 102:11201–6CrossRefGoogle Scholar
  15. Guenther A. 2002. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49:837–44PubMedCrossRefGoogle Scholar
  16. Hanson PC, Bade DL, Carpenter SR, Kratz TK. 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–9CrossRefGoogle Scholar
  17. Heimann M, Esser G, Haxeltine A, Kaduk J, Kicklighter DW, Knorr W, Kohlmaier GH, McGuire AD, Melillo J, Moore B, Otto RD, Prentice IC, Sauf W, Schloss A, Sitch S, Wittenberg U, Wurth G. 1998. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: First results of a model intercomparison study. Global Biogeochemical Cycles 12:1–24CrossRefGoogle Scholar
  18. Howarth RW. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and marine sediments. Biogeochemistry 1:5–27CrossRefGoogle Scholar
  19. Howarth RW, Teal JM. 1980. Energy flow in a salt marsh ecosystem: the role of reduced inorganic sulfur compounds. Am Nat 116:862–72CrossRefGoogle Scholar
  20. Howarth RW, Michaels AF. 2000. The measurement of primary production in aquatic ecosystems. In: Sala OE, Jackson RB, Mooney HA, Howarth RW, editors. Methods in ecosystem science. New York: Springer-Verlag. p 72–85Google Scholar
  21. Howarth RW, Schneider R, Swaney D. 1996. Metabolism and organic carbon fluxes in the tidal, freshwater Hudson River. Estuaries 19:848–65CrossRefGoogle Scholar
  22. Jannasch HW, Mottl MJ. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–25CrossRefPubMedGoogle Scholar
  23. Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Sehlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini D, Dolman AJ. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300:1538–1542PubMedCrossRefGoogle Scholar
  24. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO. 2002. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochemical Cycles 16:10.1029/2001GB001813Google Scholar
  25. Kirschbaum MUF, Farquhar GD. 1984. Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Aust J Plant Physiol 11:519–38Google Scholar
  26. Kling GW, Kipphut GW, Miller MC. 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301CrossRefPubMedGoogle Scholar
  27. Lieth H, 1975. Modeling the primary productivity of the world. In: Lieth H, Whittaker RH, editors. Primary productivity of the biosphere. Berlin: Springer-Verlag. p 237–63Google Scholar
  28. Lindeman RL. 1942. The trophic-dynamic aspects of ecology. Ecology 23:399–418CrossRefGoogle Scholar
  29. Long SP, Moya EG, Imbamba SK, Kamnalrut A, Piedade MTF, Scurlock JMO, Shen YK, Hall DO. 1989. Primary productivity of natural grass ecosystems of the tropics: A Reappraisal. Plant and Soil 115:155–66CrossRefGoogle Scholar
  30. Loreto F, Delfine S, Di Marco G. 1999. Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Aust J Plant Physiol 26:733–6CrossRefGoogle Scholar
  31. Loreto F, Velikova V, Di Marco G. 2001. Respiration in the light measured by (CO2)-C-12 emission in (CO2)-C-13 atmosphere in maize leaves. Aust J Plant Physiol 28:1103–8Google Scholar
  32. Lovett GM, Cole JJ, Pace ML. 2006. Is net ecosystem production equal to ecosystem carbon storage? Ecosystems. ForthcomingGoogle Scholar
  33. Matson PA, Parton WJ, Power AG, Swift MJ. 1997. Agricultural intensification and ecosystem properties. Science 227:504–9CrossRefGoogle Scholar
  34. Odum EP. 1959. Fundamentals of ecology. Philadelphia: WB SaundersGoogle Scholar
  35. Odum HT. 1956. Primary production in flowing waters. Limnol Oceanogr 1:102–17Google Scholar
  36. Ovington JD. 1962. Quantitative ecology and the woodland ecosystem concept. Adv Ecol Res 1:103–92CrossRefGoogle Scholar
  37. Peterson BJ. 1980. Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem. Annu Rev Ecol Syst 11:359–85CrossRefGoogle Scholar
  38. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR. 2001. The carbon cycle and atmospheric carbon dioxide. Houghton JT et al., editors. Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press. p 183–237Google Scholar
  39. Randerson JT, Chapin FS III, Harden J, Neff JC, Harmon ME. 2002. Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol Appl 12:937–47Google Scholar
  40. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–20PubMedCrossRefGoogle Scholar
  41. Richter DD, Markewitz D, Trumbore SE. 1999. Rapid accumulation and turnover of soil carbon in a reestablishing forest. Nature 400:56–8CrossRefGoogle Scholar
  42. Roberts BJ, Owens TG, Ostrom NE, Howarth RW. Aquatic ecosystem respiration rates are not constant over diel cycles: direct quantification using dissolved oxygen concentration and isotopic composition in experimental ponds. Limnol Oceanogr. ForthcomingGoogle Scholar
  43. Rodin LE, Bazilevich NI. 1967. Production and mineral cycling in terrestrial vegetation. Edinburgh: Oliver & BoydGoogle Scholar
  44. Rosenbloom NA, Doney SC, Schimel DS. 2001. Geomorphic evolution of soil texture and organic matter in eroding landscapes. Global Biogeochem Cycles 15:365–81CrossRefGoogle Scholar
  45. Sala OE, Austin AT. 2000. Methods of estimating aboveground net primary productivity. In: Sala OE, Jackson RB, Mooney HA, Howarth RW, editors. Methods in ecosystem science. New York: Springer-Verlag. p 31–43Google Scholar
  46. Schimel DS. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biol 1:77–91CrossRefGoogle Scholar
  47. Schlesinger WH. 1985. The formation of caliche in soils of the Mojave Desert, California. Geochim Cosmochim Acta 49:57–66CrossRefGoogle Scholar
  48. Schlesinger WH. 1990. Evidensce from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–4CrossRefGoogle Scholar
  49. Schlesinger WH. 1997. Biogeochemistry: an analysis of global change. 2nd ed. San Diego (CA): Academic PressGoogle Scholar
  50. Schlesinger WH, Melack JM. 1981. Transport of organic carbon in the world’s rivers. Tellus 33:172–87CrossRefGoogle Scholar
  51. Schulze E-D, Heimann M. 1998. Carbon and water exchange of terrestrial systems. In: Halloway JN, Melillo J, editors. Asian change in the context of global change. Cambridge (UK): Cambridge University Press. p 145–61Google Scholar
  52. Schulze E-D, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Luhker B, Mund M, Knohl A, Milyhukova JM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Valentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink—a synthesis. Global Change Biology 5:703–722CrossRefGoogle Scholar
  53. Schulze E-D, Wirth C, Heimann M. 2000. Climate change: managing forests after Kyoto. Science 289:2058–9PubMedCrossRefGoogle Scholar
  54. Schulze E-D, Wirth C, Heimann M. 2002. Carbon fluxes of the Eurosiberian region. Environ Control Biol 40:249–58Google Scholar
  55. Stallard RF. 1998. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochem Cycles 12:231–57CrossRefGoogle Scholar
  56. Wigley TML, Richels R, Edmonds JA. 1996. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379:240–3CrossRefGoogle Scholar
  57. Woodwell GM, Whittaker RH. 1968. Primary production in terrestrial communities. Am Zool 8:19–30Google Scholar
  58. Woodwell GM, Mackenzie FT. 1995. Biotic feedbacks in the global climatic system: will the warming feed the warming? New York: Oxford University PressGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • F. S. ChapinIII
    • 1
  • G. M. Woodwell
    • 2
  • J. T. Randerson
    • 3
  • E. B. Rastetter
    • 4
  • G. M. Lovett
    • 5
  • D. D. Baldocchi
    • 6
  • D. A. Clark
    • 7
  • M. E. Harmon
    • 8
  • D. S. Schimel
    • 9
  • R. Valentini
    • 10
  • C. Wirth
    • 11
  • J. D. Aber
    • 12
  • J. J. Cole
    • 5
  • M. L. Goulden
    • 3
  • J. W. Harden
    • 13
  • M. Heimann
    • 11
  • R. W. Howarth
    • 14
  • P. A. Matson
    • 15
  • A. D. McGuire
    • 16
  • J. M. Melillo
    • 4
  • H. A. Mooney
    • 17
  • J. C. Neff
    • 18
  • R. A. Houghton
    • 2
  • M. L. Pace
    • 5
  • M. G. Ryan
    • 18
  • S. W. Running
    • 19
  • O. E. Sala
    • 20
  • W. H. Schlesinger
    • 21
  • E.-D. Schulze
    • 11
  1. 1.Institute of Arctic BiologyUniversity of Alaska–FairbanksFairbanksUSA
  2. 2.The Woods Hole Research CenterWoods HoleUSA
  3. 3.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA
  4. 4.The Ecosystem CenterMarine Biological LaboratoryWoods HoleUSA
  5. 5.Institute of Ecosystem StudiesMillbrookUSA
  6. 6.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  7. 7.Department of BiologyUniversity of MissouriSt. LouisUSA
  8. 8.Department of Forest ScienceOregon State UniversityCorvallisUSA
  9. 9.National Center for Atmospheric ResearchBoulderUSA
  10. 10.Department of Forest Science and EnvironmentUniversity of TusciaViterboItaly
  11. 11.Max-Planck-Institute for BiogeochemistryJenaGermany
  12. 12.Complex Systems Research CenterUniversity of New HampshireDurhamUSA
  13. 13.US Geological SurveyMenlo ParkUSA
  14. 14.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  15. 15.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA
  16. 16.US Geological Survey, Alaska Cooperative Fish and Wildlife Research UnitUniversity of Alaska–FairbanksFairbanksUSA
  17. 17.Department of Biological SciencesStanford UniversityStanfordUSA
  18. 18.Geological Sciences and Environmental StudiesUniversity of ColoradoBoulderUSA
  19. 19.Rocky Mountain Research StationUSDA Forest ServiceFort CollinsUSA
  20. 20.Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceUSA
  21. 21.Nicholas School of the Environment and EarthDuke UniversityDurhamUSA

Personalised recommendations