Ecosystems

, Volume 9, Issue 6, pp 894–908 | Cite as

Current Carbon Balance of the Forested Area in Sweden and its Sensitivity to Global Change as Simulated by Biome-BGC

  • Fredrik Lagergren
  • Achim Grelle
  • Harry Lankreijer
  • Meelis Mölder
  • Anders Lindroth
Article

Abstract

Detailed information from the Swedish National Forest Inventory was used to simulate the carbon balance for Sweden by the process-based model Biome-BGC. A few shortcomings of the model were identified and solutions to those are proposed and also used in the simulations. The model was calibrated against CO2 flux data from 3 forests in central Sweden and then applied to the whole country divided into 30 districts and 4 age classes. Gross primary production (GPP) ranged over districts and age classes from 0.20 to 1.71 kg C m−2 y−1 and net ecosystem production (NEP) ranged from −0.01 to 0.44. The 10- to 30-year age class was the strongest carbon sink because of its relatively low respiration rates. When the simulation results were scaled up to the whole country, GPP and NEP were 175 and 29 Mton C y−1, respectively, for the 22.7 Mha of forests in Sweden. A climate change scenario was simulated by assuming a 4°C increase in temperature and a doubling of the CO2 concentration; GPP and NEP then increased to 253 and 48 Mton C y−1, respectively. A sensitivity analysis showed that at present CO2 concentrations NEP would peak at an increase of 5°C for the mean annual temperature. At higher CO2 levels NEP showed a logarithmic increase.

Keywords

boreal forest scots pine norway spruce national carbon balance biome-BGC modelling environmental change 

References

  1. Aalto T, Ciais P, Chevillard A, Moulin C. 2004. Optimal determination of the parameters controlling biospheric CO2 fluxes over Europe using eddy covariance fluxes and satellite NDVI measurements. Tellus 56B:93–104Google Scholar
  2. Ågren GI, Bosatta E. 1996. Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–8Google Scholar
  3. Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv Ecol Res 30:113–75Google Scholar
  4. Baldocchi DD, Harley PC. 1995. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Special issue: scaling up. Plant Cell Environ 18:1157–73CrossRefGoogle Scholar
  5. Bergh J, McMurtrie RE, Linder S. 1998. Climatic factors controlling the productivity of Norway spruce: a model-based analysis. Forest Ecol Manage 110:127–39CrossRefGoogle Scholar
  6. Bergh J, Linder S, Lundmark T, Elfving B. 1999. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecol Manage 119:51–62CrossRefGoogle Scholar
  7. Cermak J, Deml M, Penka M. 1973. A new method of sap flow rate determination in trees. Biol Plant 15:171–8CrossRefGoogle Scholar
  8. Ceschia E. 2001. Environmental effects on spatial and seasonal variations of stem respiration in European beech and Norway spruce. Silvestria 219. Uppsala: Swedish University of Agricultural Sciences. 56pGoogle Scholar
  9. Churkina G, Tenhunen J, Thornton P, Falge EM, Elbers JA, Erhard M, Grunwald T, Kowalski AS, Rannik U, Sprinz D. 2003. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems 6:168–84CrossRefGoogle Scholar
  10. Conen F, Yakutin MV, Sambuu AD. 2003. Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Global Change Biol 9:1515–20CrossRefGoogle Scholar
  11. Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK. 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources and sinks. Remote Sens Environ 84:393–410CrossRefGoogle Scholar
  12. Elliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren GI. 2005. The response of heterotrophic CO2 flux to soil warming. Global Change Biol 11:167–81CrossRefGoogle Scholar
  13. Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Öquist G. 2004. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biol 10:995–1008CrossRefGoogle Scholar
  14. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw KT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric Forest Meteorol 113:53–74CrossRefGoogle Scholar
  15. Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  16. Giardina CP, Ryan MG. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–61PubMedCrossRefGoogle Scholar
  17. Grace J. 2003. Carbo-age—Age related dynamics of carbon exchange in European forests—Integrating net ecosystem productivity in space and time. Contract AVK2-CT-1999-00045 final report, Edinburgh: European Commission General Directorate XII 5th Framework. 170pGoogle Scholar
  18. Grelle A, Lindroth A. 1996. Eddy-correlation system for long-term monitoring of fluxes of heat, water vapour and CO2. Global Change Biol 2:297–307CrossRefGoogle Scholar
  19. Huxman TE, Turnipseed AA, Sparks JP, Harley PC, Monson RK. 2003. Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oceologia 134:537–46Google Scholar
  20. Jalkanen R, Aalto T, Kurkela T. 1995. Development of needle retention in Scots pine (Pinus sylvestris) in 1957–1991 in northern and southern Finland. Trees 10:125–33CrossRefGoogle Scholar
  21. Jones CD, Cox PM, Essery RLH, Roberts DL, Woodage MJ. 2003. Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophys Res Lett 30:1479CrossRefGoogle Scholar
  22. Kimball JS, Thornton PE, White MA, Running SR. 1997. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region. Tree Physiol 17:589–99PubMedGoogle Scholar
  23. Kolari P, Pumpanen J, Rannik Ü, Ilvesniemi H, Hari P, Berninger F. 2004. Carbon balance of different aged Scots pine forests in southern Finland. Global Change Biol 10:1106–19CrossRefGoogle Scholar
  24. Körner C. 1995. Leaf diffusive conductance in the major vegetation types of the globe. In: Schulze E-D, Caldwell MM, Eds. Ecophysiology of photosynthesis. Berlin Heidelberg New York: Springer. pp 463–90Google Scholar
  25. Kucera J, Cermak J, Penka M. 1977. Improved thermal method of continual recording the transpiration flow rate dynamics. Biol Plant 19:413–20Google Scholar
  26. Lagergren F, Lindroth A. 2002. Transpiration response to soil moisture in Pine and Spruce trees in Sweden. Agric Forest Meteorol 112:67–85CrossRefGoogle Scholar
  27. Lagergren F, Eklundh L, Grelle A, Lundblad M, Mölder M, Lankreijer H, Lindroth A. 2005. Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ 28:412–23CrossRefGoogle Scholar
  28. Lankreijer H, Janssens IA, Buchmann N, Longdoz B, Epron D, Dore S. 2003. Measurement of soil respiration. In: Valentini R, Ed. Fluxes of carbon, water and energy of European forests. Berlin Heidelberg New York: Springer. pp 37–54Google Scholar
  29. Law BE, Thornton PE, Irvine J, Anthoni PM, Van Tuyl S. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol 7:755–77CrossRefGoogle Scholar
  30. Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecol Manage 188:211–24CrossRefGoogle Scholar
  31. Lindroth A, Grelle A, Morén A-S. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol 4:443–50CrossRefGoogle Scholar
  32. Lindroth A, Grelle A, Lankreijer H, Båth A, Lagergren F, Sedletski A. 2002. Partner No 04: LUPG. In: Grace J, Ed. Carbo-age 30-month report. Edinburgh. pp 22–28Google Scholar
  33. Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23CrossRefGoogle Scholar
  34. López J. 2003. Forest fires and fire management in Sweden; a comparison with Spain. Master thesis, Department of Forest Products and Markets, Swedish University of Agricultural Sciences: Uppsala. 41pGoogle Scholar
  35. Lundin L-C, Halldin S, Lindroth A, Cienciala E, Grelle A, Hjelm P, Kellner E, Lundberg A, Mölder M, Morén A-S, Nord T, Seibert J, Stähli M. 1999. Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agric Forest Meteorol 98–9:53–73CrossRefGoogle Scholar
  36. Marklund LG. 1988. Biomassafunktioner för tall, gran och björk i Sverige (Biomass functions for pine, spruce and birch in Sweden), Department of Forest Survey, report 45, Swedish University of Agricultural Sciences: Umeå. 73pGoogle Scholar
  37. Mediavilla S, Escudero A. 2003. Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytol 159:203–11CrossRefGoogle Scholar
  38. Moncrieff JB, Mahli Y, Leuning R. 1996. The propagation of errors in long term measurements of land atmosphere fluxes of carbon and water. Global Change Biol 2:231–40CrossRefGoogle Scholar
  39. Monteith JL, Unsworth MH. 1990. Principals of environmental physics, 2nd edn. London: Edward Arnold. 291pGoogle Scholar
  40. Perttu K. 1970. Radiation measurements above and in forest. Studia Forestalia Suecica 72:49Google Scholar
  41. Reich PB, Oleksyn J, Modrzynski J, Tjoelker MG. 1996. Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiol 16:643–7PubMedGoogle Scholar
  42. Robinson AP, Ek AR. 2003. Description and validation of a hybrid model of forest growth and stand dynamics for the Great Lakes region. Ecol Model 170:73–104CrossRefGoogle Scholar
  43. Ruimy A, Dedieu G, Saugier B. 1996. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem Cycles 10:269–85CrossRefGoogle Scholar
  44. Running SW, Coughlan JC. 1988. A general model of forest ecosystem processes for regional applications, I. Hydrologic balance, canopy gas exchange and primary processes. Ecol Model 42:125–54CrossRefGoogle Scholar
  45. Rydholm SA. 1965. Pulping processes. New York: Wiley. 1269pGoogle Scholar
  46. Stähli M, Hessel K, Eriksson J, Lindahl A. 1995. Physical and chemical description of the soil at the NOPEX central tower site. NOPEX technical report 16. 20 ppGoogle Scholar
  47. Stephenson NL, Mantgem PJ. 2005. Forest turnover rates follow global and regional patterns of productivity. Ecol Lett 8:524–31CrossRefGoogle Scholar
  48. Suni T, Berninger F, Vesala T, Markkanen T, Hari P, Mäkelä A, Ilvesnemi H, Hänninen H, Nikinmaa E, Huttula T, Laurila T, Aurela M, Grelle A, Lindroth A, Arneth A, Shibistova O, Lloyd J. 2003. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol 9:1410–26CrossRefGoogle Scholar
  49. Thornton PE. 1998. Regional ecosystem simulation: combining surface- and satellite-based observations to study linkages between terrestrial energy and mass budgets. Ph D thesis. Missoula MT: University of Montana. 280pGoogle Scholar
  50. Turner DP, Ritts WD, Cohen WB, Gower ST, Zhao MS, Running SW, Wofsy SC, Urbanski S, Dunn AL, Munger JW. 2003. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens Environ 88:256–70CrossRefGoogle Scholar
  51. Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Gudmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404:861–5PubMedCrossRefGoogle Scholar
  52. Vetter M, Wirth C, Böttcher H, Churkina G, Schulze E-D, Wutzler T, Weber G. 2005. Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories. Global Change Biol 11:810–27CrossRefGoogle Scholar
  53. White MA, Nemani AR. 2003. Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biol 9:967–72CrossRefGoogle Scholar
  54. White MA, Thornton PE, Running SW, Nemani RR. 2000. Parameterization and sensitivity analysis of the Biome-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Fredrik Lagergren
    • 1
  • Achim Grelle
    • 2
  • Harry Lankreijer
    • 1
  • Meelis Mölder
    • 1
  • Anders Lindroth
    • 1
  1. 1.Physical Geography and Ecosystems Analysis, Geobiosphere Science CentreLund UniversityLundSweden
  2. 2.Department of Ecology and Environmental ResearchSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations