Ecosystems

, Volume 7, Issue 6, pp 583–597 | Cite as

Novel Approaches to Study Climate Change Effects on Terrestrial Ecosystems in the Field: Drought and Passive Nighttime Warming

  • Claus Beier
  • Bridget Emmett
  • Per Gundersen
  • Albert Tietema
  • Josep Peñuelas
  • Marc Estiarte
  • Carmen Gordon
  • Antonie Gorissen
  • Laura Llorens
  • Ferran Roda
  • Dylan Williams
Original Paper

Abstract

This article describes new approaches for manipulation of temperature and water input in the field. Nighttime warming was created by reflection of infrared radiation. Automatically operated reflective curtains covered the vegetation at night to reduce heat loss to the atmosphere. This approach mimicked the way climate change, caused by increased cloudiness and increased greenhouse gas emissions, alters the heat balance of ecosystems. Drought conditions were created by automatically covering the vegetation with transparent curtains during rain events over a 2–5-month period. The experimental approach has been evaluated at four European sites across a climate gradient. All sites were dominated (more than 50%) by shrubs of the ericaceous family. Within each site, replicated 4-m × 5-m plots were established for control, warming, and drought treatments and the effect on climate variables recorded. Results over a two-year period indicate that the warming treatment was successful in achieving an increase of the minimum temperatures by 0.4–1.2°C in the air and soil. The drought treatment resulted in a soil moisture reduction of 33%–82% at the peak of the drought. The data presented demonstrate that the approach minimizes unintended artifacts with respect to water balance, moisture conditions, and light, while causing a small but significant reduction in wind speed by the curtains. Temperature measurements demonstrated that the edge effects associated with the treatments were small. Our method provides a valuable tool for investigating the effects of climate change in remote locations with minimal artifacts.

Experimental manipulation nighttime warming drought shrubland ecosystem climate change artefacts edge effects 

References

  1. 1.
    Alward, RD, Detling, JK, Milchunas, DG 1999Grassland vegetation changes and nocturnal global warmingScience28322931CrossRefPubMedGoogle Scholar
  2. 2.
    Bergh, J, Linder, S 1999Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce standsGlobal Change Biol524553CrossRefGoogle Scholar
  3. 3.
    Bootsma, A 1994Long-term (100 Yr) climatic trends for agriculture at selected locations in CanadaClimatic Change266588Google Scholar
  4. 4.
    Cao, MK, Woodward, FI 1998Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate changeGlobal Change Biol418598CrossRefGoogle Scholar
  5. 5.
    Chapin, FS, Shaver, GR, Giblin, AE, Nadelhoffer, KJ, Laundre, JA 1995Responses of arctic tundra to experimental and observed changes in climateEcology76694711Google Scholar
  6. 6.
    Chapin, FS, BretHarte, MS, Hobbie, SE, Zhong, HL 1996Plant functional types as predictors of transient responses of arctic vegetation to global changeJ Veget Sci734758Google Scholar
  7. 7.
    Emmett, BA, Beier, C, Estiarte, M, Tietema, A, Kristensen, HL, Williams, D, Penuelas, J, Schmidt, IK, Sowerby, A 2004The response of soil processes to climate change: Results from manipulation studies of shrublands across an environmental gradientEcosystems7.Google Scholar
  8. 8.
    Farnsworth, EJ, NunezFarfan, J, Careaga, SA, Bazzaz, FA 1996Phenology and growth of three temperate forest life forms in response to artificial soil warmingJ Ecol8396777Google Scholar
  9. 9.
    Freeman C, Hudson J, Lock MA, Reynolds B. 1993. A field-base approach to investigating potential impacts of climate change upon wetlands. Extreme Hydrological event: Precipitation, Floods and Droughts. IAHS Publ. No. 213, 151–5.Google Scholar
  10. 10.
    Gundersen, P, Boxman, AW, Lamersdorf, N, Moldan, F, Andersen, BR 1998Experimental manipulation of forest ecosystems: lessons from large roof experimentsFor Ecol Manage10133952CrossRefGoogle Scholar
  11. 11.
    Harte, J, Torn, MS, Chang, FR, Feifarek, B, Kinzig, AP, Shaw, R, Shen, K 1995Global warming and soil microclimate—results from a meadow-warming experimentEcol Applic513250Google Scholar
  12. 12.
    Heil, GW, Bobbink, R 1993

    Impact of atmospheric nitrogen deposition on dry heathlands. A stochastic model simulation competition between Calluna vulgaris and two grass species

    Aerts, RHeil, GW eds. Heathlands: Patterns and Processes in a Changing Environment. DordrechtKluwer Academic PublishersThe Netherlands181200
    Google Scholar
  13. 13.
    Houghton, JT, Ding, Y, Griggs, DJ, Noguer, M, van der Lindern, PJ, Xiaosu, D 2001Climate Change 2001: The Scientific BasisCambridge University PressCambridgeGoogle Scholar
  14. 14.
    Ineson, P, Taylor, K, Harrison, AF, Poskitt, J, Benham, DG, Tipping, E, Woof, C 1998aEffects of climate change on nitrogen dynamics in upland soils. 1. A transplant approachGlobal Change Biol414352CrossRefGoogle Scholar
  15. 15.
    Ineson, P, Benham, DG, Poskitt, J, Harrison, AF, Taylor, K, Woods, C 1998bEffects of climate change on nitrogen dynamics in upland soils. 2. A soil warming studyGlobal Change Biol415361CrossRefGoogle Scholar
  16. 16.
    IPCC. 1990. Impacts Assessment of climate Change – Report of working Group II. W.J. McG Tegart et al. (Eds) Australian Government Publishing Service, Canberra, AustraliaGoogle Scholar
  17. 17.
    IPCC. 1995. Climate Change 1995 – Impacts, Adaptations and Mitigation of climate Change: Scientific-Technical Analyses. R.T Watson et al. (Eds) Cambridge University Press, UK. pp 878Google Scholar
  18. 18.
    Jonasson, S, Michelsen, A, Schmidt, IK, Nielsen, EV 1999Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arcticEcology80182843Google Scholar
  19. 19.
    Kennedy, AD 1994Simulated climate-change—A field manipulation study of polar microarthropod community response to global warmingEcography1713140Google Scholar
  20. 20.
    Lamersdorf, NP, Beier, C, Blanck, K, Bredemeier, M, Farrell, EP, Kreutzer, K, Rasmussen, L, Ryan, M, Weis, W, Xu, Y-J 1998Effect of drought experiments using roof installations on acidification/nitrification of soilsFor Ecol Manage10195109CrossRefGoogle Scholar
  21. 21.
    Llorens, L, Peñuelas, J, Beier, C, Emmett, BA, Estiarte, M, Tietema, A 2004Effects of an experimental increase of temperature and drought on the photosynthetic performance of two Ericaceous shrub species along a north–south European gradientEcosystems7.Google Scholar
  22. 22.
    Lindroth, A, Grelle, A, Moren, AS 1998Long-term measurements of boreal forest carbon balance reveal large temperature sensitivityGlobal Change Biol444350CrossRefGoogle Scholar
  23. 23.
    Lukewille, A, Wright, RF 1997Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern NorwayGlobal Change Biol31321CrossRefGoogle Scholar
  24. 24.
    Luxmoore, RJ, Hanson, PJ, Beauchamp, JJ, Joslin, JD 1998Passive nighttime warming facility for forest ecosystem researchTree Physiol1861523PubMedGoogle Scholar
  25. 25.
    Marion, GM, Henry, GHR, Freckman, DW, Johnstone, J, Jones, G, Jones, MH, Levesque, E, Molau, U, Molgaard, P, Parsons, AN, Svoboda, J, Virginia, RA 1997Open-top designs for manipulating field temperature in high-latitude ecosystemsGlobal Change Biol32032CrossRefGoogle Scholar
  26. 26.
    McHale, PJ, Mitchell, MJ 1996Disturbance effects on soil solution chemistry due to heating cable installationBiol Fertil Soils22404CrossRefGoogle Scholar
  27. 27.
    Miles, JE, Bale, JS, Hodkinson, ID 1997Effects of temperature elevation on the population dynamics of the upland heather psyllid Strophingia ericae (Curtis) (Homoptera: Psylloidea)Global Change Biol32917CrossRefGoogle Scholar
  28. 28.
    Norby, RJ, Edwards, NT, Riggs, JS, Abner, CH, Wullschleger, SD, Gunderson, CA 1997Temperature-controlled open-top chambers for global change researchGlobal Change Biol325967CrossRefGoogle Scholar
  29. 29.
    Peñuelas, J, Gordon, C, Llorens, L, Nielsen, T, Tietema, A, Beier, C, Bruna, P, Emmet, BA, Estiarte, M, Gorissen, T 2004Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons and species in a north–south European gradientEcosystems7.Google Scholar
  30. 30.
    Peterjohn, WT, Mellillo, JM, Bowles, FP, Steudler, PA 1993Soil warming and trace gas fluxes—experimental-design and preliminary flux resultsOecologia931824Google Scholar
  31. 31.
    Rasmussen, L, Beier, C, Bergstedt, A 2002Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climateFor Ecol Manage15817988CrossRefGoogle Scholar
  32. 32.
    Roltsch, WJ, Zalom, FG, Strawn, AJ, Strand, JF, Pitcairn, MJ 1999Evaluation of several degree-day estimation methods in California climatesInt J Biometeorol4216976CrossRefGoogle Scholar
  33. 33.
    SAS Institute1987SAS/STAT Guide for Personal ComputersSAS Institute IncCary, NC1028Google Scholar
  34. 34.
    Schulze, ED, Scholes, RJ, Ehleringer, J, Hunt, LA, Canadell, J, Chapin, FS, Steffen, WL 1999

    The study of ecosystems in the context of global change

    Walker, BSteffen, WCanadell, JIngram, J eds. The terrestrial biosphere and global change—implications for natural and managed ecosystemsCambridge University PressCambridge1944
    Google Scholar
  35. 35.
    Shaver, GR, Billings, WD, Chapin, FS, Giblin, AE, Nadelhoffer, KJ, Oechel, WC, Rastetter, EB 1992Global change and the carbon balance of arctic ecosystemsBioscience4243341Google Scholar
  36. 36.
    Shaver, GR, Canadell, J, Chapin, FS, Gurevitch, J, Harte, J, Henry, G, Ineson, P, Jonasson, S, Melillo, J, Pitelka, L, Rustad, L 2000Global warming and terrestrial ecosystems: A conceptual framework for analysisBioscience5087182Google Scholar
  37. 37.
    Tilman, D, Downing, JA 1994Biodiversity and stability in grasslandsNature3673635CrossRefGoogle Scholar
  38. 38.
    Van Breemen, N, Jenkins, A, Wright, RF, Beerling, DJ, Arp, WJ, Berendse, F, Beier, C, Collins, R, van Dam, D, Rasmussen, L, Verburg, PSJ, Wills, MA 1998Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project)Ecosystems134551CrossRefGoogle Scholar
  39. 39.
    Wan, S, Luo, Y, Wallace, LL 2002Changes in microclimate induced by experimental warming and clipping in tallgrass prairieGlobal Change Biol875468CrossRefGoogle Scholar
  40. 40.
    Watson, RT, Rodhe, H, Oeschger, H, Siegentaler, U 1991

    Greenhouse gases and aerosols

    Houghton, JTJenkins, GJEphraums, JJ eds. Climate change, the IPCC scientific assessmentCambridge University PressCambridge140
    Google Scholar
  41. 41.
    Wolters, V, Silver, WL, Bignell, DE, Coleman, DC, Lavelle, P, Van der Putten, WH, De Ruiter, P, Rusek, J, Wall, DH, Wardle, DA, Brussaard, L, Dangerfield, JM, Brown, VK, Giller, KE, Hooper, DU, Sala, O, Tiedje, J, Van Veen, JA 2000Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: Implications for ecosystem functioningBioscience50108998Google Scholar
  42. 42.
    Wright, RF 1998Effect of increased carbon dioxide and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project)Ecosystems121625CrossRefGoogle Scholar
  43. 43.
    Wright, RF, Beier, C, Cosby, BJ 1998Effects of nitrogen deposition and climate change on nitrogen runoff at Norwegian boreal forest catchments: the MERLIN model applied to the RAIN and CLIMEX projectsHydrol Earth Syst Sc2399414Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Claus Beier
    • 1
  • Bridget Emmett
    • 2
  • Per Gundersen
    • 3
  • Albert Tietema
    • 4
  • Josep Peñuelas
    • 5
  • Marc Estiarte
    • 5
  • Carmen Gordon
    • 6
  • Antonie Gorissen
    • 7
  • Laura Llorens
    • 5
  • Ferran Roda
    • 8
  • Dylan Williams
    • 9
  1. 1.RISØ National LaboratoryRoskildeDenmark
  2. 2.Centre for Ecology and Hydrology–BangorGwynedd LL572UPUnited Kingdom
  3. 3.Forest and Landscape, Denmark Royal Agricultural and Veterinary UniversityHørsholmDenmark
  4. 4.Center for Geo-ecological Research (JCG)Institute for Biodiversity and Ecosystem Dynamics (IBED)–Physical Geography, University of AmsterdamAmsterdamThe Netherlands
  5. 5.Unitat Ecofisiologia CSIC–CEAB–CREAFCREAF (Center for Ecological Research and Forestry Applications)BarcelonaSpain
  6. 6.Department of Plant and Soil ScienceUniversity of AberdeenUnited Kingdom
  7. 7.Plant Research InternationalWageningenThe Netherlands
  8. 8.CREAF (Center for Ecological Research and Forestry Applications)BarcelonaSpain
  9. 9.Countryside Council for WalesGwynedd LL57 2LQUnited Kingdom

Personalised recommendations