, Volume 7, Issue 6, pp 672–685

Earthworms Increase Nitrogen Leaching to Greater Soil Depths in Row Crop Agroecosystems

  • Jorge Domínguez†
  • Patrick J. Bohlen‡
  • Robert W. Parmelee¶
Original Paper


Many biological functions of soil organisms are replaced in intensive agricultural systems, but earthworms and other soil invertebrates may continue to have significant effects on nutrient cycling in these disturbed systems. We investigated the influence of earthworms on leaching of water and nitrogen in corn (Zea mays L.) agroecosystems in a long-term (6-year) field experiment in Wooster, Ohio, USA. We employed a split-plot experimental design in which main plots received one of three nutrient treatments (cow manure, legume–grass mixture, inorganic fertilizer) and contained three 4.5 × 4.5-m field enclosures in which earthworm populations were increased, decreased, or unmodified. We installed zero-tension lysimeters beneath enclosures with increased or decreased populations and collected leachates regularly in 1996, analyzing them for water volume and concentrations of NH4+, NO3, and dissolved organic nitrogen (DON). Earthworms did not influence concentrations of inorganic N or DON but greatly increased leachate volume. The total flux of N in soil leachates was 2.5-fold greater in plots with increased earthworm populations than in those with decreased populations. Earthworm population density was positively correlated with total N leaching flux (r2 = 0.49). Leaching losses of N to a depth of 45 cm were greater in the inorganically fertilized than in the organically fertilized plots, possibly due to greater inorganic N concentrations and lower immobilization potential in inorganically fertilized systems. Our results indicate that earthworms can increase the leaching of water and nitrogen to greater soil depths, potentially increasing N leaching from the system.

earthworms continuous corn agroecosystems nitrogen leaching groundwater nitrate contamination water infiltration nitrogen fertilizer manure cover crops soil microbial biomass long-term experiments 


  1. 1.
    Allmaras, RR, Copeland, SM, Power, JF, Tanaka, DL 1994

    Conservation tillage systems in the northernmost central United States

    Carter, MR eds. Conservation tillage in temperate agroecosystems: development and adaptation to soil, climate, and biological constraintsCRC PressBoca Raton, Flp 25687
    Google Scholar
  2. 2.
    Berry, EC, Karlan, DL 1993Comparison of alternative farming systems. II. Earthworm population density and species diversityAm J Alternative Agric8216Google Scholar
  3. 3.
    Beven, K, Germann, PF 1982Macropores and water flow in soilWater Resources Res18131125Google Scholar
  4. 4.
    Blair, JM, Parmelee, RW, Lavelle, P 1994

    Influences of earthworms on biogeochemistry

    Hendrix, PF eds. Earthworm ecology and biogeography in North AmericaLewis ScientificChelsea, MIp 12758
    Google Scholar
  5. 5.
    Blair, JM, Bohlen, PJ, Edwards, CA, Stinner, BR, McCartney, DA, Allen, MF 1995Manipulation of earthworm populations in field experiments in agroecosystemsActa Zool Fenn1964851Google Scholar
  6. 6.
    Blair, JM, Parmelee, RW, Allen, MF, McCartney, DA, Edwards, CA, Stinner, BR 1997Changes in soil N pools in response to earthworm population manipulations in agroecosystems with different N sourcesSoil Biol Biochem293617CrossRefGoogle Scholar
  7. 7.
    Bohlen, PJ, Edwards, CA 1995Earthworm effects on nitrogen dynamics and soil respiration in microcosms receiving organic and inorganic nutrientsSoil Biol Biochem273418Google Scholar
  8. 8.
    Bohlen, PJ, Edwards, WM, Edwards, CA 1995aEarthworm community structure and diversity in experimental agricultural watersheds in Northeastern OhioPlant Soil1702339Google Scholar
  9. 9.
    Bohlen, PJ, Parmelee, RW, Blair, JM, Edwards, CA, Stinner, BR 1995bEfficacy of methods for manipulating earthworm populations in large-scale field experiments in agroecosystemsSoil Biol Biochem279939CrossRefGoogle Scholar
  10. 10.
    Bohlen, PJ, Parmelee, RW, McCartney, DA, Edwards, CA 1997Effects of earthworms (Lumbricus terrestris) on the carbon and nitrogen dynamics of decomposing surface litter in corn agroecosystemsEcol Applic713419Google Scholar
  11. 11.
    Brye, KR, Norman, JM, Bundy, LG, Gower, ST 2001Nitrogen and carbon leaching in agroecosystems and their role in denitrification potentialJ Environ Qual305870PubMedGoogle Scholar
  12. 12.
    Burger, M, Jackson, LE 2003Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systemsSoil Biol Biochem352936CrossRefGoogle Scholar
  13. 13.
    D’Elia, CF, Steudler, PA, Corwin, N 1977Determination of total nitrogen in aqueous samples using persulfate digestionLimnol Oceanogr227604Google Scholar
  14. 14.
    Drinkwater, LE, Wagoner, P, Sarrantonio, M 1998Legume-based cropping systems have reduced carbon and nitrogen lossesNature3962625CrossRefGoogle Scholar
  15. 15.
    Edwards, CA, Bohlen, PJ 1996Biology and ecology of earthwormsChapman and HallLondonGoogle Scholar
  16. 16.
    Edwards CA, Edwards WM, Shipitalo MJ. 1992a. Earthworm populations under conservation tillage and their effects on transport of pesticides into groundwater. Brighton Crop Protection Conference: Pests and Diseases. p 859–64.Google Scholar
  17. 17.
    Edwards, CA, Bohlen, PJ, Linden, DR, Subler, S 1994

    Earthworms in agroecosystems

    Hendrix, PE eds. Earthworm ecology and biogeography in North AmericaLewis PublishersBoca Raton, FLp 185214
    Google Scholar
  18. 18.
    Edwards, WM, Shipitalo, MJ, Owens, LB, Norton, LD 1989Water and nitrate movement in earthworm burrows within long-term no-fill cornfieldsSoil Water Conservation442403CrossRefGoogle Scholar
  19. 19.
    Edwards, WM, Shipitalo, MJ, Traina, SJ, Edwards, CA, Owens, LB 1992bRole of Lumbricus terrestris L. burrows on quality of infiltrating waterSoil Biol Biochem24155561CrossRefGoogle Scholar
  20. 20.
    Edwards, WM, Shipitalo, MJ, Dick, WA, Owens, LB 1992cRainfall intensity affects transport of water and chemicals through macropores in no-till soilSoil Sci Soc Am J56528Google Scholar
  21. 21.
    Ehlers, W 1975Observations on earthworm channels and infiltration on tilled and untilled loess soilSoil Sci1192429Google Scholar
  22. 22.
    Germann, PF, Edwards, WM, Owens, LB 1984Profiles of bromide and increased soil moisture after infiltration into soils with macroporesSoil Sci Soc Am J4823744Google Scholar
  23. 23.
    Görres, JH, Savin, M, Amador, JA 1997Dynamics of carbon and nitrogen mineralization, microbial biomass, and nematode abundance within and outside the burrow walls of anecic earthworms (Lumbricus terrestris)Soil Sci16266671CrossRefGoogle Scholar
  24. 24.
    Hallberg, GR 1989

    Nitrate in groundwater in the U.S

    Follett, RF eds. Nitrogen management and groundwater protectionElsevierNew Yorkp 3574
    Google Scholar
  25. 25.
    Hallegraeff, GM 1993A review of harmful algal blooms and their apparent global increasePhycologia327999Google Scholar
  26. 26.
    Hendrix, PF 1998

    Earthworms in agroecosystems: a summary of current research

    Edwards, CA eds. Earthworm EcologySt. Lucie PressBoca Raton, FLp 25972
    Google Scholar
  27. 27.
    Howarth, RW, Billen, G, Swaney, D, Townsend, A, Jaworski, N, Lajtha, K, Downing, JA, Elmgren, R, Caraco, N, Jordan, T, Berendse, F, Freney, J, Kudeyarov, V, Murdoch, P, Zhu Zhao-Liang, . 1996Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influencesBiogeochemistry3575139Google Scholar
  28. 28.
    Jenkinson, DS 2001The impact of humans on the nitrogen cycle, with focus on temperate arable agriculturePlant Soil228315CrossRefGoogle Scholar
  29. 29.
    Jenkinson, DS, Powlson, DS 1976The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomassSoil Biol Biochem820913CrossRefGoogle Scholar
  30. 30.
    Joschko, M, Diestel, H, Larink, O 1989Assessment of earthworm burrowing efficiency in compacted soil with a combination of morphological and soil physical measurementsBiol Fertil Soils81916Google Scholar
  31. 31.
    Keeney, D, Muller, M 2000Nitrogen and the upper Mississippi RiverInstitute for Agriculture and Trade PolicyMinneapolis, MNGoogle Scholar
  32. 32.
    Lachnicht, SL, Hendrix, PF 2001Interaction of the earthworm Diplocardia mississippiensis (Megascolecidae) with microbial and nutrient dynamics in a subtropical SpodosolSoil Biol Biochem3314117CrossRefGoogle Scholar
  33. 33.
    Lachnicht, SL, Parmelee, RW, McCartney, D, Allen, M 1997Characteristics of macroporosity in a reduced tillage agroecosystem with manipulated earthworm populations: implications for infiltration and nutrient transportSoil Biol Biochem294938CrossRefGoogle Scholar
  34. 34.
    Lee, KE 1985Earthworms. Their ecology and relationships with soils and land useAcademic PressNew YorkGoogle Scholar
  35. 35.
    Lofs–Holmin, A 1983

    Earthworm population dynamics in different agricultural rotation

    Satchell, JE eds. Earthworm ecology from Darwin to vermicultureChapman and HallLondonp 15160
    Google Scholar
  36. 36.
    Parmelee, RW, Bohlen, PJ, Blair, JM 1998

    Earthworms and nutrient cycling processes: integrating across the ecological hierarchy

    Edwards, CA eds. Earthworm ecologySt. Lucie PressBoca Raton, FLp 12346
    Google Scholar
  37. 37.
    Poudel, DD, Horwath, WR, Lanini, WT, Temple, SR, van Bruggen, AHC 2002Comparison of N availability and leaching potential, crop yields and weeds in low-input and conventional farming systems in northern CaliforniaAgric Ecosystems Environ9012537CrossRefGoogle Scholar
  38. 38.
    SAS Institute1990SAS user’s guide: statisticsSAS Institute, IncCary, NCGoogle Scholar
  39. 39.
    Sharpley, A, Syers, JK, Springett, JA 1979Effect of surface-casting earthworms on the transport of phosphorus and nitrogen in surface runoff from pastureSoil Biol Biochem1145962CrossRefGoogle Scholar
  40. 40.
    Shipitalo, MJ, Edwards, WM 1993Seasonal patterns of water and chemical movement in tilled and no-till column lysimetersSoil Sci Soc Am J5721823Google Scholar
  41. 41.
    Shipitalo, MJ, Edwards, WM 1996Effects of initial water content on macropore/matrix flow and transport of surface-applied chemicalsJ Environ Qual2566270Google Scholar
  42. 42.
    Shipitalo, MJ, Edwards, WM, Dick, WA, Owens, LB 1990Initial storm effects on macropore transport of surface-applied chemicals in no-till soilSoil Sci Soc Am J5415306Google Scholar
  43. 43.
    Stehouwer, RC, Dick, WA, Traina, SJ 1994Sorption and retention of herbicides in vertically oriented earthworm and artificial burrowsJ Environ Qual2328692Google Scholar
  44. 44.
    Subler, S, Baranski, CM, Edwards, CA 1997Earthworm additions increased short-term nitrogen availability and leaching in two grain-crop agroecosystemsSoil Biol Biochem2941321CrossRefGoogle Scholar
  45. 45.
    Tomlin, AD, Shipitalo, MJ, Edwards, WM, Protz, R 1994

    Earthworms and their influence on soil structure and infiltration

    Hendrix, PF eds. Earthworm ecology and biogeography in North AmericaLewis PublishersBoca Raton, FLp 15984
    Google Scholar
  46. 46.
    Tong, Y, Emteryd, O, Lu, D, Grip, H 1997Effect of organic manure and chemical fertilizer on nitrogen uptake and nitrate leaching in a Eum-orthic anthrosols profileNutrient Cycl Agroecosys482259CrossRefGoogle Scholar
  47. 47.
    Trojan, MD, Linden, DR 1992Microrelief and rainfall effects on water and solute movement in earthworm burrowsSoil Sci Soc Am J5672733Google Scholar
  48. 48.
    Vitousek, PM, Matson, PA 1984Mechanisms of nitrogen retention in forest ecosystems: a field experimentScience225512Google Scholar
  49. 49.
    Vitousek, PM, Aber, JD, Howarth, RH, Likens, GE, Matson, PA, Schindler, DW, Schlesinger, WH, Tilman, DG 1997Human alteration of the global nitrogen cycle: Source and consequencesEcol Applic773750Google Scholar
  50. 50.
    Voroney, RP, Paul, EA 1984Determination of kC and kN in situ for calibration of the chloroform fumigation incubation methodSoil Biol Biochem16914CrossRefGoogle Scholar
  51. 51.
    Walkley, A, Black, IA 1934An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration methodSoil Sci372938Google Scholar
  52. 52.
    Weil, RR, Weismiller, RA, Turner, RS 1990Nitrate contamination of groundwater under irrigated Coastal Plain soilsJ Environ Qual194418Google Scholar
  53. 53.
    Zachmann, JE, Linden, DR, Clapp, CE 1987Macroporous infiltration and redistribution as affected by earthworms, tillage, and residueSoil Sci Soc Am J5115806Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Jorge Domínguez†
    • 1
  • Patrick J. Bohlen‡
    • 1
  • Robert W. Parmelee¶
    • 1
  1. 1.Department of EntomologyOhio State UniversityColumbusUSA

Personalised recommendations