Advertisement

Ecosystems

, Volume 7, Issue 5, pp 454–467 | Cite as

Light-transmission Profiles in an Old-growth Forest Canopy:Simulations of Photosynthetically Active Radiation by Using Spatially Explicit Radiative Transfer Models

  • Maria J. Mariscal
  • Scott N. Martens
  • Susan L. UstinEmail author
  • Jiquan Chen
  • Stuart B. Weiss
  • Dar A. Roberts
Article

Abstract

Light interception is a driving variable for many key ecosystem processes in forests. Canopy gaps, as natural irregularities, are common features of Pacific Northwest conifer forests and have profound importance on the within-canopy light environment. We used two spatially explicit radiative transfer models (OLTREE and SolTran) to understand better the vertical profile distribution of light penetration in an old-growth forest. Canopy access at the Wind River Canopy Crane Research Facility provided an opportunity to apply these models in a tall, old-growth, Douglas-fir–western hemlock forest. Both models required three-dimensional descriptions for every crown (location, orientation, and size) in a 4-ha area. Crowns were then simulated as foliage-filled ellipsoids through which light is attenuated following Beer’s law. We simulated vertical profiles (2-m height intervals) of transmitted photosynthetically active radiation (PAR) in 16 gaps previously measured by Parker (1997). Point-by-point comparisons (n = 480) between measured and modeled results showed little agreement because small errors in crown location yielded large local differences in PAR transmittance. However, average gap profiles (n = 16) of PAR transmittance showed excellent agreement (r2 = 0.94) between simulated and measured values. SolTran was used to simulate vertical profiles of daily PAR flux at different seasons for the whole 4-ha canopy, not just gaps. Overall, our results show that both models produced excellent simulations of spatially averaged vertical profiles of PAR transmission in the old-growth forest and are suitable for further investigations at other space and time scales.

Keywords

light profiles photosynthetically active radiation (PAR) irradiance distribution radiative transfer models old-growth conifer forests forest gap structure Wind River Canopy Crane Research Facility (WRCCRF) 

Notes

Acknowledgements

This research was performed at the Wind River Canopy Crane Research Facility, a cooperative scientific venture among the University of Washington, the USFS PNW Research Station, and the USFS Gifford Pinchot National Forest. This research was supported by the Office of Science, Biological and Environmental Research Program (BER), US Department of Energy (DOE), through the Western Regional Center of the National Institute for Global Environmental Change (NIGEC) under Cooperative Agreement DE-FC03-90ER61010. Any opinions, findings, and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the view of the DOE. We wish to thank Geoffrey G. Parker for his data and suggestions on an earlier version of this report.

References

  1. 1.
    Anderson, MC, Norman, JM, Meyers, TP, Diak, GR 2000An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiencyAgric For Meteorol10126589CrossRefGoogle Scholar
  2. 2.
    Baldocchi, DD, Harley, PC 1995Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and applicationPlant Cell Environ18115773Google Scholar
  3. 3.
    Betts, AK, Ball, JK 1997Albedo over the boreal forestJ Geophys Res10228,879909Google Scholar
  4. 4.
    Brunner, A 1998A light model for spatially explicit forest stand modelsFor Ecol Manage1071946CrossRefGoogle Scholar
  5. 5.
    Canham, CD, Denslow, JS, Platt, WJ, Runcle, JR, Spies, TA, White, PS 1990Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forestsCan J For Res2062031Google Scholar
  6. 6.
    Chen, J, Franklin, JF 1997Growing-season microclimate variability within an old-growth Douglas-fir forestClim Res82734Google Scholar
  7. 7.
    Easter, MJ, Spies, TA 1994Using hemispherical photography for estimating photosynthetic photon flux density under canopies and in gaps in Douglas-fir forests of the Pacific NorthwestCan J For Res2420508Google Scholar
  8. 8.
    Franklin FJ, Cromack K Jr, Denison W, McKee A, Maser C, Sedell J, Swanson F, Juday G. 1981. Ecological characteristics of old-growth Douglas-fir forests. General technical report PNW-118. Portland (OR): USDA Forest Service, Pacific Northwest Research StationGoogle Scholar
  9. 9.
    Franklin, FJ, DeBell, DS 1988Thirty-six years of tree population change in old-growth Pseudotsuga–Tsuga forestCan J For Res186339Google Scholar
  10. 10.
    Gates, DM 1980Biophysical ecologySpringer- VerlagNew YorkGoogle Scholar
  11. 11.
    Grace, JC, Jarvis, PG, Norman, JM 1987Modelling the interception of solar radiant energy in intensively managed standsNZ J For Sci17193209Google Scholar
  12. 12.
    Grant, RH, Heisler, GM, Gao, W 1996Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditionsAgric For Meteorol8226792CrossRefGoogle Scholar
  13. 13.
    Harmon, ME, Bible, K, Ryan, MG, Shaw, DC, Chen, H, Klopatek, J, Li, X 2004Production, respiration, and overall carbon balance in an old-growth PseudotsugaTsuga forest ecosystemEcosystems7.[this issue]Google Scholar
  14. 14.
    Harmon, ME, Franklin, JF, Swanson, FJ, Sollins, P, Gregory, SV, Lattin, JD, Anderson, NH, Cline, SP, Aumen, NG, Sedell, JR, Lienkaemper, GW, Cromack, K, Cummins, KW 1986Ecology of coarse woody debris in temperate ecosystemsAdvances in Ecological Research15133302Google Scholar
  15. 15.
    Hollinger, DY, Kelliher, FM, Byers, JN, Hunt, JE 1994Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphereEcology7513450Google Scholar
  16. 16.
    Ishii, H, Clement, JP, Shaw, DC 2000aBranch growth and crown form in old coastal Douglas-firFor Ecol Manage1318191CrossRefGoogle Scholar
  17. 17.
    Ishii, H, Reynolds, JH, Ford, ED, Shaw, DC 2000bHeight growth and vertical development of an old-growth Pseudotsuga–Tsuga forest in southwestern Washington State, USACan J For Res301724CrossRefGoogle Scholar
  18. 18.
    Jarvis, PG, James, GB, Landsberg, JJ 1976ConiferousforestMonteith, JL eds. Vegetation and the atmosphere, volume 2AcademicLondon171240Google Scholar
  19. 19.
    Lertzman, KP 1992Patterns of gap-phase replacement in a subalpine, old-growth forestEcology7365769Google Scholar
  20. 20.
    Lertzman, KP, Sutherland, GD, Inselberg, A, Saunders, SC 1996Canopy gaps and the landscape mosaic in a coastal temperate rain forestEcology77125470Google Scholar
  21. 21.
    Mariscal, MJ, Orgaz, F, Villalobos, FJ 2000Modelling and measurements of radiation interception by olive canopiesAgric For Meteorol10018397CrossRefGoogle Scholar
  22. 22.
    Martens, SN, Breshears, DD, Meyer, CW 2000Spatial distributions of understory light along the grassland/forest continuum: effects of cover, height, and spatial pattern of tree canopiesEcol Modell1267993CrossRefGoogle Scholar
  23. 23.
    Martens, SN, Ustin, SL, Norman, JM 1991Measurement of tree canopy architectureInt J Remote Sens12152545Google Scholar
  24. 24.
    Mukammal, EK 1971Some aspects of radiant energy in a pine forestArch Metereol Geophys Bioklimatol [B]192952Google Scholar
  25. 25.
    Ni, W, Woodcock, CE 2000Effect of canopy structure and the presence of snow on the albedo of boreal conifer forestsJ Geophys Res105D11,879888Google Scholar
  26. 26.
    Nilsson, LO, Eckersten, H 1983Willow production as a function of radiation and temperatureAgric Meteorol304957CrossRefGoogle Scholar
  27. 27.
    Norman, JM, Jarvis, PG 1975Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr). V. Radiation penetration theory and a test caseJ Appl Ecol1283978Google Scholar
  28. 28.
    Norman, JM, Welles, JM 1983Radiative transfer in an array of canopiesAgron J754818Google Scholar
  29. 29.
    Parker, G 1997Canopy structure and light environment of an old-growth Douglas-fir/Western Hemlock forestNorthwest Sci7126170Google Scholar
  30. 30.
    Parker, GG, Harmon, ME, Lefsky, MA, Chen, J, Pelt, R, Weiss, SB, Thomas, SC, Winner, WE, Shaw, DC, Franklin, JF 2004Three-dimensional structure of an old-growth PseudotsugaTsuga forest and its implications for radiation balance, microclimate, and atmospheric gas exchangeEcosystems7.[this issue]Google Scholar
  31. 31.
    Paw U, KT, Falk, M, Suchanek, TH, Ustin, SL, Chen, J, Park, Y-S, Winner, WE, Thomas, SC, Hsiao, TC, Shaw, RH,  et al. 2004Carbon dioxide exchange between an old-growth forest and the atmosphereEcosystems7.[this issue]Google Scholar
  32. 32.
    Perttunen, J, Sievanen, R, Nikinmaa, E, Salminen, H, Saarenmaa, H, Vakeva, J 1996LIGNUM: a tree model based on simple structural unitsAnn Bot778798CrossRefGoogle Scholar
  33. 33.
    Rich PM. 1989. Manual for analysis of hemispherical canopy photography. Report LA-11733-M. Los Alamos, NM: Los Alamos National LaboratoryGoogle Scholar
  34. 34.
    Rich, PM 1990Characterizing plant canopies with hemispherical photographsRemote Sens Rev51329Google Scholar
  35. 35.
    Roberts, DA, Ustin, SL, Ogunjemiyo, S, Chen, J, Hinckley, T 2004Scaling up the forests of the Pacific Northwest using remote sensingEcosystems7.[this issue]Google Scholar
  36. 36.
    Ross, J 1981The radiation regime and architecture of plant standsDr W JunkThe HagueGoogle Scholar
  37. 37.
    Sellers, PJ 1985Canopy reflectance, photosynthesis and transpirationInt J Remote Sens6133572Google Scholar
  38. 38.
    Shaw, DC, Franklin, JF, Bible, K, Klopatek, J, Freeman, E, Greene, S, Parker, GG 2004Ecological setting of the Wind River canopy craneEcosystems7.[this issue]Google Scholar
  39. 39.
    Song, B 1998Three-dimensional forest canopies and their spatial relationships to understory vegetation [dissertation]Michigan Technological UniversityHoughtonGoogle Scholar
  40. 40.
    Spies, TA, Franklin, JF, Klopsch, M 1990Canopy gaps in Douglas-fir forests of the Cascade MountainsCan J For Res2064959CrossRefPubMedGoogle Scholar
  41. 41.
    Spitters, C, Toussaint, H, Goudriaan, J 1986Separating the diffuse and direct components of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiationAgric For Meteorol3821729CrossRefGoogle Scholar
  42. 42.
    Stanhill, G 1970Some results of helicopter measurements of albedoSol Energy136966Google Scholar
  43. 43.
    Stewart, JB 1971The albedo of a pine forestQ J R Meteorol Soc975614CrossRefGoogle Scholar
  44. 44.
    Tajchman, SJ 1972The radiation and energy balances of coniferous and deciduous forestsJ Appl Ecol935975Google Scholar
  45. 45.
    Tenhunen, JD, Hanano, R, Abril, M, Weiler, EW, Hartung, W 1994Above- and belowground controls on leaf conductance of Ceanothus thyrsiflorus growing in a chaparral environment: the role of abscisic acidOecologia (Berl)9930614Google Scholar
  46. 46.
    Thomas, SC, Winner, WE 2000aA rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopiesAgric For Meteorol1001924CrossRefGoogle Scholar
  47. 47.
    Thomas, SC, Winner, WE 2000bLeaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopyCan J For Res30192230CrossRefGoogle Scholar
  48. 48.
    Unsworth, MH, Phillips, N, Link, T, Bond, BJ, Falk, M, Harmon, ME, Hinckley, TM, Marks, D, Paw U, KT 2004Components and controls of water flux in an old-growth Douglas-fir–western hemlock ecosystemEcosystems7.[this issue]Google Scholar
  49. 49.
    Pelt, R, North, MP 1999Testing a ground-based canopy model using the Wind River canopy craneSelbyana2035762Google Scholar
  50. 50.
    Wang, YP, Jarvis, PG 1990aDescription and validation of an array model: MAESTROAgric For Meteorol5125780CrossRefGoogle Scholar
  51. 51.
    Wang, YP, Jarvis, PG 1990bInfluence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO)Tree Physiol7297316Google Scholar
  52. 52.
    Wang, Y, Polglase, PJ 1995Carbon balance in the tundra, boreal forest and humid tropical forest during climate change: scaling up from leaf physiology and soil carbon dynamicsPlant Cell Environ18112644Google Scholar
  53. 53.
    Weiss, SB 2000Vertical and temporal distribution of insolation in gaps in an old-growth coniferous forestCan J For Res30195364CrossRefGoogle Scholar
  54. 54.
    Winner, WE, Thomas, SC, Berry, JA, Bond, BJ, Cooper, CE, Hinckley, TM, Ehleringer, JR, Fessenden, JE, Lamb, B, McCarthy, S,  et al. 2004Canopy carbon gain and water use: analysis of old-growth conifers in the Pacific NorthwestEcosystems7.[this issue]Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Maria J. Mariscal
    • 1
  • Scott N. Martens
    • 1
  • Susan L. Ustin
    • 1
    Email author
  • Jiquan Chen
    • 2
  • Stuart B. Weiss
    • 3
  • Dar A. Roberts
    • 4
  1. 1.Center for Spatial Technologies and Remote Sensing, Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA
  2. 2.School of Forestry and Wood ProductsMichigan Technological UniversityHoughtonUSA
  3. 3.Center for Conservation Biology, Department of Biological SciencesStanford UniversityStanfordUSA
  4. 4.Geography DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations