Advertisement

Ecosystems

, Volume 6, Issue 8, pp 762–772 | Cite as

Erosion and the Rejuvenation of Weathering-derived Nutrient Supply in an Old Tropical Landscape

  • Peter Vitousek
  • Oliver Chadwick
  • Pamela Matson
  • Steven Allison
  • Louis Derry
  • Lisa Kettley
  • Amy Luers
  • Esther Mecking
  • Valerie Monastra
  • Stephen Porder
Article

Abstract

Studies of long-term soil and ecosystem development on static geomorphic surfaces show that old soils become depleted in most rock-derived nutrients. As they are depleted, however, static surfaces also are dissected by fluvial erosion. This fluvial erosion leads to colluvial soil transport on the resulting slopes, which in turn can rejuvenate the supply of weathering-derived nutrients to plants. We evaluated the influence of erosion and consequent landscape evolution on nutrient availability along a slope on the Island of Kaua’i, near the oldest, most nutrient-depleted site on a substrate age gradient across the Hawaiian Islands. Noncrystalline minerals characteristic of younger Hawaiian soils increased from 3% of the soil on the static constructional surface at the top of the slope to 13% on the lower slope, and the fraction of soil phosphorus (P) that was occluded (and hence unavailable) decreased from 80% to 56% at midslope. Foliar nitrogen and P concentrations in Metrosideros polymorpha increased from 0.82% and 0.062% to 1.13% and 0.083% on the constructional surface and lower slope, respectively. The increase in foliar P over a horizontal difference of less than 250 m represents nearly half of the total variation in foliar P observed over 4.1 million years of soil and ecosystem development in Hawai’i. The fraction of foliar strontium (Sr) derived from weathering of Hawaiian basalt was determined using 87Sr:86Sr; it increased from less than 6% on the constructional surface to 13% and 31% on lower slope and alluvial positions. Erosional processes increase both nutrient supply on this slope and the fine-scale biogeochemical diversity of this old tropical landscape; it could contribute to the relatively high level of species diversity observed on Kaua’i.

Keywords

fluvial erosion Hawai’i landscape evolution nitrogen nutrient availability phosphorus soil mineralogy strontium isotopes toposequence 

Notes

Acknowledgements

We thank the Joseph Souza Center and the Hawaii Department of Land and Natural Resources’ State Parks and Forestry and Wildlife Divisions for access to field sites and logistical support; Heraldo Farrington and David Penn for assistance in the field; and Douglas Turner, Adina Payton, and Bettina Wiegand for help with laboratory analyses and Sr isotope determinations. We thank Dan Richter for a very helpful review of an earlier draft of this article. This research was supported by a grant from the Andrew W. Mellon Foundation, and by NSF grant DEB-0108492.

References

  1. 1.
    Austin, AT, Vitousek, PM 1998Nutrient dynamics on a precipitation gradient in Hawai’iOecologia (Berl)11351929Google Scholar
  2. 2.
    Binkley, D, Matson, PA 1983Ion exchange resin bag method for assessing forest soil nitrogen availabilitySoil Sci Soc Am J4710502Google Scholar
  3. 3.
    Brubaker, SC, Jones, AJ, Lewis, DT, Frank, K 1993Soil properties associated with landscape positionSoil Sci Soc Am J572359Google Scholar
  4. 4.
    Capo, RC, Stewart, BW, Chadwick, OA 1998Strontium isotopes as tracers of earth surface processes: theory and methodsGeoderma82197225Google Scholar
  5. 5.
    Chadwick, OA, Chorover, J 2001The chemistry of pedogenic thresholdsGeoderma10032153Google Scholar
  6. 6.
    Chadwick, OA, Derry, L, Vitousek, PM, Huebert, BJ, Hedin, LO 1999Changing sources of nutrients during four million years of ecosystem developmentNature3974917Google Scholar
  7. 7.
    Chen, Z-S, Hsieh, C-F, Jiang, F-Y, Hsieh, T-S, Sun, I-F 1997Relations of soil properties to topography and vegetation in a subtropical rain forest in southern TaiwanPlant Ecol13222941Google Scholar
  8. 8.
    Crews, TE, Kitayama, K, Fownes, J, Herbert, D, Mueller-Dombois, D, Riley, RH, Vitousek, PM 1995Changes in soil phosphorus and ecosystem dynamics across a long soil chronosequence in Hawai’iEcology76140724Google Scholar
  9. 9.
    Enoki, T, Kawaguchi, H, Iwatsubo, G 1997Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availabilityEcol Res121919Google Scholar
  10. 10.
    Gartlan, JS, Newbury, D, Mc, C, Thomas, DW, Waterman, PG 1986The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, CamerounVegetatio6513148Google Scholar
  11. 11.
    Giambelluca, TW, Nullet, MA, Schroeder, TA 1986Rainfall atlas of HawaiiDepartment of Land and Natural ResourcesHonoluluGoogle Scholar
  12. 12.
    Giblin, AE, Nadelhoffer, KJ, Shaver, GR, Laundre, JA, McKerrow, AJ 1991Biogeochemical diversity along a riverside toposequence in arctic AlaskaEcol Monogr6141535Google Scholar
  13. 13.
    Harrington, RA, Fownes, JH, Meinzer, FC, Scowcroft, PG 1995Forest growth along a rainfall gradient in Hawaii: Acacia koa stand structure productivity, foliar nutrients, and water- and nutrient-use efficienciesOecologia (Berl)10227784Google Scholar
  14. 14.
    Hedley, MJ, Stewart, JWB, Chauhan, BS 1982Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and laboratory incubationsSoil Sci Soc Am J469706Google Scholar
  15. 15.
    Herbert, DA, Fownes, JH 1995Phosphorus limitation of forest leaf area and net primary productivity on a weathered tropical soilBiogeochemistry2922335Google Scholar
  16. 16.
    Hirobe, M, Tokuchi, N, Iwatsubo, G 1998Spatial variability of soil nitrogen transformations along a forest slope in a Cryptomeria japonica D. Don plantation.Eur J Soil Biol3412331Google Scholar
  17. 17.
    Holcomb, RT, Reiners, PW, Nelson, BK, Sawyer, N-LE 1997Evidence for two shield volcanoes exposed on the island of Kauai, HawaiiGeology258114Google Scholar
  18. 18.
    Jackson, ML, Lim, ., Zelzny, LW 1986Oxides, hydroxides, and aluminosilicates. In Methods of soil analysis, Part 1, Physical and mineralogical properties. 2nd edition.Agronomy910249Google Scholar
  19. 19.
    Jenny, H 1980Soil genesis with ecological perspectivesSpringer-VerlagNew YorkGoogle Scholar
  20. 20.
    Kennedy, MJ, Chadwick, OA, Vitousek, PM, Derry, LA, Hendricks, D 1998Replacement of weathering with atmospheric sources of base cations during ecosystem development, Hawaiian IslandsGeology2610158Google Scholar
  21. 21.
    Kurtz, AC, Derry, LA, Chadwick, OA 2001Accretion of Asian dust to Hawaiian soils: isotopic, elemental, and mineral mass balancesGeochim Cosmochim Acta65197183Google Scholar
  22. 22.
    Kurtz, AC, Derry, LA, Chadwick, OA, Alfano, MJ 2000Refractory element mobility in volcanic soilsGeology286836Google Scholar
  23. 23.
    Lepsch, IF, Buol, SW, Daniels, RB 1977Soil–landscape relationships in the Occidental Plateau of Sao Paulo State, Brazil. II. Soil morphology, genesis, and classification.Soil Sci Soc Am J4110915Google Scholar
  24. 24.
    McDonald, GA, Abbot, AT, Peterson, FL 1983Volcanoes in the sea: the geology of HawaiiUniversity of Hawaii PressHonolulu517Google Scholar
  25. 25.
    McKeague, JA, Day, JH 1966Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soilsCan J Soil Sci461322Google Scholar
  26. 26.
    Miller, AJ, Schuur, EAG, Chadwick, OA 2001Redox control of phosphorus pools in Hawaiian montane forest soils.Geoderma10221937Google Scholar
  27. 27.
    Pearson, HL, Vitousek, PM 2002Nitrogen and phosphorus dynamics and symbiotic nitrogen fixation across a substrate age gradient in Hawai’iEcosystems558796Google Scholar
  28. 28.
    Restrepo C, Vitousek P, Neville P. 2003. Landslides significantly alter land cover and the distribution of biomass: an example from the Ninole ridges of Hawai’i. Plant Ecol 166: 131–143Google Scholar
  29. 29.
    Richter, DD, Markewitz, D 2001Understanding soil change: soil sustainability over millennia, centuries, and decades.Cambridge University PressCambridgeGoogle Scholar
  30. 30.
    Riley, RH, Vitousek, PM 1995Nutrient dynamics and trace gas flux during ecosystem development in Hawaiian montane rainforestEcology76292304Google Scholar
  31. 31.
    Sanchez, PA 1976Properties and management of soils in the tropicsJohn Wiley and SonsNew YorkGoogle Scholar
  32. 32.
    Scatena, FN, Lugo, AE 1995Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto RicoGeomorphology13199213Google Scholar
  33. 33.
    Schimel, D, Stillwell, MA, Woodmansee, RG 1985Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppeEcology6627682Google Scholar
  34. 34.
    Schoeneberger, PJ, Wysocki, DA, Benham, EC, Broderson, WD 1998Field book for describing and sampling soilsNatural Resources Conservation Service, USDA, National Soil Survey CenterLincoln, NEGoogle Scholar
  35. 35.
    Schuur, E.A.G., Matson, PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forcits. Occologia 128: 431–442Google Scholar
  36. 36.
    Silver, WL, Lugo, AE, Keller, M 1999Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soilsBiogeochemistry4430128Google Scholar
  37. 37.
    Silver, WL, Scatena, FN, Johnson, AH, Siccama, TG, Sanchez, MJ 1994Nutrient availability in a montane wet tropical forest: spatial patterns and methodological considerationsPlant Soil16412945Google Scholar
  38. 38.
    Soil Survey Laboratory Staff. 1992. Soil survey laboratory methods manual. Soil Survey Investigations Report no. 42, V.2.0, USDAGoogle Scholar
  39. 39.
    SPSS1998Systat version 8.0.SPSSChicagoGoogle Scholar
  40. 40.
    Stewart, BW, Capo, RC, Chadwick, OA 2001Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soilsGeochim Cosmochim Acta65108799Google Scholar
  41. 41.
    Tanner, EVJ 1977Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelationsJ Ecol65883918Google Scholar
  42. 42.
    Tiessen, H, Moir, JO 1993Characterization of available P by sequential extraction.Carter, MR eds. Soil Sampling and methods of analysis.LouisBoca Raton, FL7586Google Scholar
  43. 43.
    Van den Driessche, R. (1974) Prediction of mineral nutrient status of trees by foliar analysis. bot. Rev. 40: 347–394Google Scholar
  44. 44.
    Vitousek, PM, Aplet, G, Turner, DR, Lockwood, JJ 1992The Mauna Loa environmental matrix: foliar and soil nutrientsOecologia (Berl)8937282Google Scholar
  45. 45.
    Vitousek, PM, Benning, TL 1995Ecosystem and landscape diversity: islands as model systems.Vitousek, PMLoope, LLAdsersen, H eds. Biological diversity and ecosystem function on islands.Springer-VerlagBerlin7384Google Scholar
  46. 46.
    Vitousek, PM, Chadwick, OA, Crews, T, Fownes, J, Hendricks, DM, Herbert, D 1997Soil and ecosystem development across the Hawaiian Islands.GSA Today7(9)18Google Scholar
  47. 47.
    Vitousek, PM, Turner, DR, Kitayama, K 1995Foliar nutrients during long-term soil development in Hawaiian montane rain forestEcology7671220Google Scholar
  48. 48.
    Walker, LR, Zarin, DJ, Fetcher, N, Myster, RW, Johnson, AH 1996Ecosystem development and plant succession on landslides in the CaribbeanBiotropica2856676Google Scholar
  49. 49.
    Walker, TW, Syers, JK 1976The fate of phosphorus during pedogenesisGeoderma15119Google Scholar
  50. 50.
    Zarin, DJ, Johnson, AH 1995Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico.Soil Sci Soc Am J59144452Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Peter Vitousek
    • 1
  • Oliver Chadwick
    • 2
  • Pamela Matson
    • 3
  • Steven Allison
    • 1
  • Louis Derry
    • 4
  • Lisa Kettley
    • 1
    • 5
  • Amy Luers
    • 3
  • Esther Mecking
    • 3
    • 6
  • Valerie Monastra
    • 4
    • 7
  • Stephen Porder
    • 1
  1. 1.Department of Biological SciencesStanford University, Stanford, California 94305USA
  2. 2.Department of GeographyUniversity of California, Santa Barbara, California 93106USA
  3. 3.Department of Geological and Environmental SciencesStanford University, Stanford, California 94305USA
  4. 4.Department of GeologyCornell University, Ithaca, New York 14853USA
  5. 5..CH2M Hill, Inc., 155 Grand Avenue, Suite 1000, Oakland, California 94612USA
  6. 6..Burke Mountain Academy, PO Box 78, East Burke, Vermont 05832USA
  7. 7..Geosyntec Consultants, 629 Massachusetts Avenue, Boxborough, Massachusetts 01719USA

Personalised recommendations