Skip to main content
Log in

Effect of crystallite size and calcination temperature on the thermal stability of single nanocrystalline chromium oxide: expressed by novel correlation

  • Original Article
  • Published:
Materials Research Innovations

Abstract.

The thermal reaction of chromium acetylacetonate in various organic solvents at 300 °C for 2 h yielded an amorphous product. Single nanocrystalline chromium oxide was obtained after being calcined at 300 °C for 1 h. The crystallite size of product is in the range of 16–26 nm. In this work, the thermal stability of product was given by BET/BET0. It was found that the crystals of large crystallite size show higher thermal stability than the crystals of small crystallite size. Thermal stability of chromium oxide can be presented by the correlation of the BET surface area after calcination, crystallite size of as-synthesized product and calcination temperature (500–900 °C) as shown below.

$${{BET} \over {BET_0}} = \left( {{T \over {\sqrt {d_0}}}} \right)^n$$

where

BET = :

surface area of product after calcination (m2/g)

BET0 = :

surface area of as-synthesized product (m2/g)

T = :

calcination temperature (K)

d0 = :

crystallite size of as-synthesized product (nm)

n = :

arbitrary constant

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Mc Daniel MP (1985) Adv Catal 33: 48

    Google Scholar 

  2. De Rossi S, Ferraris G, Fremiotti S, Indovina V, Cimino A (1993) Appl Catal A General 106: 125

    Article  Google Scholar 

  3. De Rossi S, Ferraris G, Fremiotti S, Garrone E, Ghiotti G, Campa MC, Indovina V (1994) J Catal 148: 36

    Article  Google Scholar 

  4. Sanfilippo D, Buonomo F, Fusco G, Lupieri M, Miracca I (1992) Chem Eng Sci 47: 2313

    Article  CAS  Google Scholar 

  5. Udomsak S, Anthony RG (1996) Ind Eng Chem Res 35: 47

    Article  CAS  Google Scholar 

  6. Cavani F, Koutyrev M, Trifiro F, Bartolini A, Ghisletti D, Lezzi R, Santucci A, Del Piero G (1996) J Catal 158: 236

    Article  CAS  Google Scholar 

  7. Kobylinski TP, Taylor BW (1973) J Catal 31: 450

    CAS  Google Scholar 

  8. Bosch H, Janssen F (1988) Catal Today 2: 369

    Article  CAS  Google Scholar 

  9. Engweiler J, Nickl J, Baiker A, von Zelewsky A (1994) J Catal 145: 141

    Article  CAS  Google Scholar 

  10. Ramanarayanan TA, Mumford JD, Chun CM, and Petkovic RA (2000) Solid State Ionics 136: 83

    Article  Google Scholar 

  11. Chuanxian D, Bingtang H, Huiling L (1986) Proceedings of the 11th International Thermal Spraying Conference

  12. Grzybowska B, Sloczynski J, Grabowski R, Wcislo K, Stoch J, Kozlowska A (1998) J Catal 178: 687

    Article  CAS  Google Scholar 

  13. Tsuzuki T, McCormick PG (2000) Acta Materialia 48: 2795

    Article  CAS  Google Scholar 

  14. Mougin J, Le Bihan T, Lucazeau G (2001) J Phy Chem Solids 62: 553

    Article  CAS  Google Scholar 

  15. Chatterjee M, Siladitya B, Ganguli D (1995) Mater Lett 25: 261

    Article  CAS  Google Scholar 

  16. Gash AE, Tillotson TM, Satcher JH Jr, Hrubesh LW, Simpson RL (2001) J Non Cryst Solids 285: 22

    Article  CAS  Google Scholar 

  17. Kirchnerova J, Klvana D, Chaouki J (2000) Appl Catal A General 196: 191

    Article  CAS  Google Scholar 

  18. Arul Dhas A, Koltypin Y, Gedanken A (1997) Chem Mater 9: 3159

    Article  Google Scholar 

  19. Inoue M, Tanino H, Kondo Y, Inui T (1989) J Am Ceram Soc 72: 352

    CAS  Google Scholar 

  20. Inoue M, Kominami H, Inui T (1992) J Am Ceram Soc 75: 2597

    CAS  Google Scholar 

  21. Garvie RC (1965) J Phys Chem 69: 1238

    CAS  Google Scholar 

  22. Garvie RC (1978) J Phys Chem 82: 218

    CAS  Google Scholar 

  23. Stichert W, Schüth F (1998) Chem Mater 10: 2020

    Article  CAS  Google Scholar 

  24. Xie S, Iglesia E, Bell AT (2000) Chem Mater 12: 2442

    Article  CAS  Google Scholar 

  25. Mastai T, Polsky R, Koltypin Y, Gedanken A, Hodes G (1999) J Am Chem Soc 12: 10047

    Article  Google Scholar 

  26. Zhao SJ, Wang SQ, Cheng DY, Ye HQ (2001) J Phys Chem B 105: 12857

    Article  CAS  Google Scholar 

  27. Kominami H, Kato J, Murakami S, Kera Y, Inoue M, Inui T, Ohtani B (1999) J Molec Catal A 144: 165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyasan Praserthdam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praserthdam, P., Phungphadung, J. & Tanakulrungsank, W. Effect of crystallite size and calcination temperature on the thermal stability of single nanocrystalline chromium oxide: expressed by novel correlation. Mat Res Innovat 7, 118–123 (2003). https://doi.org/10.1007/s10019-003-0238-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10019-003-0238-2

Keywords.

Navigation