Skip to main content
Log in

Strategic environmental policy in a differentiated duopoly with overlapping ownership: a welfare analysis

  • Research Article
  • Published:
Environmental Economics and Policy Studies Aims and scope Submit manuscript

Abstract

This paper analyzes strategic environmental policy when polluting firms engage in overlapping ownership arrangements (OOAs) under differentiated duopoly with quantity competition. Specifically, we focus on two pollution control instruments: emission taxes and standards. The key findings are as follows: (i) Compared to the case without ownership, the optimal environmental tax rate and absolute standard are higher (lower) when the polluting firms’ products are complements (substitutes). (ii) Both the tax and standard policies are equally efficient in their effects on the firms’ output and abatement decisions, consumer surplus, environmental quality, and social welfare, regardless of whether the differentiated products are complements or substitutes. (iii) If the government sets equity share and emission tax (or standard) simultaneously to maximize social welfare, the optimal equity share may exceed 50% for OOA firms producing two complements and is inversely related to the degree of product complementarity. Our results have welfare implications for the choice of environmental regulation between taxes and standards, when equity share is exogenous, or when the government determines an optimal mix of equity share and emission tax (or standard).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is an important distinction between financial interest and corporate control in the industrial economics literature (e.g., O’Brien and Salop 2000). Our analysis focuses on the aspect of financial interest, which refers to an investment in receiving a positive share of a firm’s profit without having any discretions on the firm's operations and decisions. As for corporate control, it refers to situations under which shareholders/investors can make the decisions for the firm. Researchers further analyze the competitive and anticompetitive effects of partial ownership arrangements (see, e.g., Reynolds and Snapp 1986; Farrell and Shapiro 1990; Malueg 1992; O’Brien and Salop 2000; Clayton and Jorgensen 2005; Dietzenbacher and Temurshoev 2008; and Lopez and Vives 2019).

  2. For studies on environmental policy under imperfectly competitive market, see Buchanan (1969), Adar and Griffin (1976), Barnett (1980), Levin (1985), Baumol and Oates (1988), Simpson (1995), Helfand (1999), Requate (2006), Lambertini and Tampieri (2012), and Moner and Rubio (2016), among others. In addressing pollution concern in the era of globalization, Tiba and Belaid (2020) examine how foreign direct investment (FDI) inflows and trade openness affects environmental degradation. There empirical results show the possibilities of bidirectional long-term causality between CO2 emissions, GDP, trade openness, and FDI. As for the short-run scenarios, there is a unidirectional causality going from GDP to CO2, and from FDI to CO2. Interestingly, there is a bidirectional causality between trade openness and CO2.

  3. Interesting cases of bilateral ownership arrangements as mentioned in Bárcena-Ruiz and Campo (2012) include the automobile industry. The Renault as a French auto firm has engaged in ownership arrangements with the Nissan (a Japanese auto manufacturer). Bárcena-Ruiz and Campo (2012) indicate that Renault acquires a 44.3% equity stake in Nissan Motor and Nissan Motor acquires a 15% stake in Renault. See Flath (1992), Fanti (2013, 2016), and Lopez and Vives (2019) for more discussions on examples of bilateral ownership arrangements.

  4. Analyzing the case of symmetric Cournot duopoly, Reitman (1994) shows that both competing firms have incentives to acquire a passive stake in each other’s profits. Farrell and Shapiro (1990) note that there exists a mutually beneficial price at which each firm can sell some of its stock to its competitor if and only if the two firms' joint profits rise with the equity share (p. 287).

References

  • Adar Z, Griffin JM (1976) Uncertainty and the choice of pollution control instruments. J Environ Econ Manag 3:178–188

    Article  Google Scholar 

  • Alley W (1997) Partial ownership arrangements and collusion in the automobile industry. J Ind Econ 45:191–205

    Article  Google Scholar 

  • Amundsen ES, Bergman L (2002) Will cross-ownership reestablish market power in the Nordic power market? Energy J 23:73–95

    Article  Google Scholar 

  • Azar J, Schmalz MC, Tecu I (2018) Anti-competitive effects of common ownership. J Finance 73:1513–1565

    Article  Google Scholar 

  • Bárcena-Ruiz JC, Campo ML (2012) Partial cross-ownership and strategic environmental policy. Resour Energy Econ 34:198–210

    Article  Google Scholar 

  • Bárcena-Ruiz JC, Campo ML (2017) Taxes versus standardsundercross-ownership. Resour Energy Econ 50:36–50

    Article  Google Scholar 

  • Barnett AH (1980) The Pigouvian tax rule under monopoly. Am Econ Rev 70:1037–1041

    Google Scholar 

  • Baumol WJ, Oates WE (1988) The theory of environmental policy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brito D, Ribeiro R, Vasconcelos H (2014) Measuring unilateral effects in partial horizontal acquisitions. Int J Ind Organ 33:22–36

    Article  Google Scholar 

  • Buchanan JM (1969) External diseconomies, corrective taxes and market structure. Am Econ Rev 59:174–177

    Google Scholar 

  • Clayton MJ, Jorgensen BN (2005) Optimal cross holding with externalities and strategic interactions. J Bus 78:1505–1522

    Article  Google Scholar 

  • Dietzenbacher E, Temurshoev U (2008) Ownership relations in the presence of cross-shareholding. J Econ 95:189–212

    Article  Google Scholar 

  • Dong D, Chang Y-M (2020) Emission taxes vs. environmental standards under partial ownership arrangements. Res Econ 74:250–262

    Article  Google Scholar 

  • Fanti L (2013) Cross-ownership and unions in a Cournot duopoly: when profits reduce with horizontal product differentiation. Jpn World Econ 27:34–40

    Article  Google Scholar 

  • Fanti L (2016) Interlocking cross-ownership in a unionized duopoly: when social welfare benefits from “more collusion. J Econ 11:47–63

    Article  Google Scholar 

  • Farrell J, Shapiro C (1990) Asset ownership and market structure in oligopoly. RAND J Econ 21:275–292

    Article  Google Scholar 

  • Flath D (1992) Horizontal shareholding interlocks. Manag Decis Econ 13:75–77

    Article  Google Scholar 

  • Gilo D, Moshe Y, Spiegel Y (2006) Partial cross ownership and tacit collusion. RAND J Econ 37:81–99

    Article  Google Scholar 

  • Helfand GE (1999) Standards versus taxes in pollution control. In: van der Bergh J (ed) Handbook of environmental and resource economics. Edward Elgar, Cheltenham

    Google Scholar 

  • Kennedy P, O’Brien DP, Song M, Waehrer K (2017) The competitive effects of common ownership: economic foundations and empirical evidence. Available at: SSRN: https://ssrn.com/abstract=3008331 or http://dx.doi.org/https://doi.org/10.2139/ssrn.3008331. Accessed 20 July 2021

  • Lambertini L, Tampieri A (2012) Do minimum quality standards bite in polluting industries? Res Econ 66:184–194

    Article  Google Scholar 

  • Levin D (1985) Taxation within Cournot oligopoly. J Public Econ 27:281–290

    Article  Google Scholar 

  • Lopez AL, Vives X (2019) Overlapping ownership, R&D spillovers, and antitrust policy. J Polit Econ 127:2394–2437

    Article  Google Scholar 

  • Malueg D (1992) Collusive behavior and partial ownership of rivals. Int J Ind Organ 10:27–34

    Article  Google Scholar 

  • Moner-Colonques R, Rubio SJ (2016) The strategic use of innovation to influence environmental policy: taxes versus standards. BE J Econ Anal Policy 16:973–1000

    Article  Google Scholar 

  • O’Brien DP, Salop SC (2000) Competitive effects of partial ownership: financial interest and corporate control. Antitrust Law J 67:559–614

    Google Scholar 

  • Ono H, Nakazato T, Davis C, Alley W (2004) Partial ownership arrangements in the Japanese automobile industry: 1990–2000. J Appl Econ 7:355–367

    Article  Google Scholar 

  • Parker PM, Röller L-H (1997) Collusive conduct in duopolies: multimarket contact and cross-ownership in the mobile telephone industry. RAND J Econ 28:304–322

    Article  Google Scholar 

  • Reitman D (1994) Partial ownership arrangements and the potential for collusion. J Ind Econ 42:313–322

    Article  Google Scholar 

  • Requate T (2006) Environmental policy under imperfect competition. In: Tietenberg T, Folmer H (Eds) The International Yearbook of Environmental and Resource Economics 2006/2007. A Survey of Current Issues. Edward Elgar.

  • Reynolds RJ, Snapp BR (1986) The competitive effects of partial equity interests and joint ventures. Int J Ind Organ 4:141–153

    Article  Google Scholar 

  • Simpson RD (1995) Optimal pollution taxation in a Cournot duopoly. Environ Resour Econ 6:359–369

    Article  Google Scholar 

  • Singh N, Vives X (1984) Price and quantity competition in a differentiated duopoly. Rand J Econ 15:546–554

    Article  Google Scholar 

  • Tiba S, Belaid F (2020) The pollution concern in the era of globalization: do the contribution of foreign direct investment and trade openness matter? Energy Econ 92:104966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manaf Sellak.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Nor do the authors have any financial and personal relationships with other organizations or people that could inappropriately influence or bias their work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank Shunsuke Managi, the Editor, and two anonymous referees for helpful comments and suggestions. Any remaining errors are, of course, ours.

Appendix A

Appendix A

A-1. Comparison between the equilibrium outcomes under OOAs \((\alpha > 0)\) and those in the absence of ownership \((\alpha = 0).\) The case of tax emission policy

$$t^{T} \left( {\alpha > 0} \right) - t^{T} \left( {\alpha = 0} \right) = \frac{2A(1 - \alpha )\,( - 13\alpha + 6\gamma - 3\alpha \gamma + 13)}{{ - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170}} - \frac{2A(6\gamma + 13)}{{27\gamma^{2} + 138\gamma + 170}}$$
$$= - \frac{{18A\alpha \gamma (120\gamma - 134\alpha + 27\gamma^{2} - 81\alpha \gamma - 9\alpha \gamma^{2} + 134)}}{{(27\gamma^{2} + 138\gamma + 170)(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)}}.$$

It follows that \(t^{T} \left( {\alpha > 0} \right) - t^{T} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$q^{T} \left( {\alpha > 0} \right) - q^{T} \left( {\alpha = 0} \right) = \frac{9(1 - \alpha )\,[8(1 - \alpha ) + 3\gamma ]A}{{ - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170}} - \frac{9A(3\gamma + 8)}{{(27\gamma^{2} + 138\gamma + 170)}}$$
$$= - \frac{{\gamma 27A\alpha (138\gamma - 182\alpha + 27\gamma^{2} - 66\alpha \gamma + 182)}}{{\,(27\gamma^{2} + 138\gamma + 170)(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)}}.$$

We thus have \((\alpha > 0) - q^{T} (\alpha = 0) > 0\) when \(\gamma < 0.\)

$$e^{T} \left( {\alpha > 0} \right) - e^{T} \left( {\alpha = 0} \right) = \frac{3A(1 - \alpha )( - 11\alpha + 3\gamma + 3\alpha \gamma + 11)\,}{{ - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170}} - \frac{3A(3\gamma + 11)}{{27\gamma^{2} + 138\gamma + 170}}$$
$$= - \frac{{\gamma 81A\alpha (6\gamma - 16\alpha + 5\alpha \gamma + 3\alpha \gamma^{2} + 16)}}{{(27\gamma^{2} + 138\gamma + 170)(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)}}.$$

It follows that \(e^{T} \left( {\alpha > 0} \right) - e^{T} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$a_{1}^{T} \left( {\alpha > 0} \right) - a_{1}^{T} \left( {\alpha = 0} \right) = \frac{{3(26A - 52A\alpha + 12A\gamma + 26A\alpha^{2} - 18A\alpha \gamma + 6A\alpha^{2} \gamma )}}{{2( - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170)}} - \frac{78A + 36A\gamma }{{54\gamma^{2} - 276\gamma + 340}}$$
$$= - \frac{{27A\alpha \gamma (120\gamma - 134\alpha + 27\gamma^{2} - 81\alpha \gamma - 9\alpha \gamma^{2} + 134)}}{{\,(27\gamma^{2} + 138\gamma + 170)(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)}}.$$

This result implies that \(a_{1}^{T} (\alpha > 0) - a_{1}^{T} (\alpha = 0) > 0\) when \(\gamma < 0.\)

$$ED^{T} \left( {\alpha > 0} \right) - ED^{T} \left( {\alpha = 0} \right) = \frac{{12A^{2} (1 - \alpha )^{2} ( - 11\alpha + 3\gamma + 3\alpha \gamma + 11)^{2} }}{{( - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170)^{2} }} - \frac{{12A^{2} (3\gamma + 11)^{2} }}{{(27\gamma^{2} + 138\gamma + 170)^{2} }}.$$

It follows that \(ED^{T} \left( {\alpha > 0} \right) - ED^{T} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$CS^{T} \left( {\alpha > 0} \right) - CS^{T} \left( {\alpha = 0} \right) = \frac{{81A^{2} (1 - \alpha )^{2} (1 + \gamma )\,(8 - 8\alpha + 3\gamma )^{2} }}{{( - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170)^{2} }} - \frac{{81A^{2} (1 + \gamma )(3\gamma + 8)^{2} }}{{(138\gamma + 27\gamma^{2} + 170)^{2} }}$$

It follows that \(CS^{T} \left( {\alpha > 0} \right) - CS^{T} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$\begin{gathered} \pi_{i}^{T} \left( {\alpha > 0} \right) - \pi_{i}^{T} \left( {\alpha = 0} \right) \hfill \\ = \left( {\frac{\begin{gathered} 3A^{2} (1 - \alpha )\,( - 9\alpha^{3} \gamma^{2} + 1650\alpha^{3} \gamma - 1897\alpha^{3} - 1251\alpha^{2} \gamma^{2} \hfill \\ - 1848\alpha^{2} \gamma + 5691\alpha^{2} + 243\alpha \gamma^{3} + 981\alpha \gamma^{2} - 1254\alpha \gamma \hfill \\ - 5691\alpha + 279\gamma^{2} + 1452\gamma + 1897) \hfill \\ \end{gathered} }{{(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)^{2} }}} \right) - \frac{{3A^{2} (1452\gamma + 279\gamma^{2} + 1897)}}{{(138\gamma + 27\gamma^{2} + 170)^{2} }} \hfill \\ \end{gathered}$$
$$= \frac{{27A^{2} \alpha \gamma \left( \begin{gathered} 729\alpha^{3} \gamma^{5} - 126\,198\alpha^{3} \gamma^{4} - 1185\,435\alpha^{3} \gamma^{3} - 3625\,812\alpha^{3} \gamma^{2} - 3856\,716\alpha^{3} \gamma \hfill \\ - 501\,160\alpha^{3} + 100\,602\alpha^{2} \gamma^{5} + 1311\,714\alpha^{2} \gamma^{4} + 6230\,196\alpha^{2} \gamma^{3} + 13\,084\,848\alpha^{2} \gamma^{2} \hfill \\ + 10\,933\,416\alpha^{2} \gamma + 1503\,480\alpha^{2} - 19\,683\alpha \gamma^{6} - 381\,996\alpha \gamma^{5} - 2668\,302\alpha \gamma^{4} \hfill \\ - 8867\,286\alpha \gamma^{3} - 14\,570\,136\alpha \gamma^{2} - 10\,296\,684\alpha \gamma - 1503\,480\alpha + 19\,683\gamma^{6} \hfill \\ + 258\,066\gamma^{5} + 1365\,174\gamma^{4} + 3668\,868\gamma^{3} + 5111\,100\gamma^{2} + 3219\,984\gamma + 501\,160 \hfill \\ \end{gathered} \right)}}{{(27\gamma^{2} + 138\gamma + 170)^{2} (6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)^{2} }}$$

We thus have \(\pi^{T} \left( {\alpha > 0} \right) - \pi^{T} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$\begin{gathered} SW^{T} \left( {\alpha > 0} \right) - SW^{T} \left( {\alpha = 0} \right) \hfill \\ = \frac{{9A^{2} \left( {1 - \alpha } \right)\,\left( { - 11\alpha + 3\gamma + 3\alpha \gamma + 11} \right)}}{{( - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170)}} - \frac{{9A^{2} \left( {3\gamma + 11} \right)}}{{27\gamma^{2} + 138\gamma + 170}} \hfill \\ \end{gathered}$$
$$= - \frac{{\gamma 243A^{2} \alpha \left( { - 16\alpha + 6\gamma + 5\alpha \gamma + 3\alpha \gamma^{2} + 16} \right)}}{{\left( {138\gamma + 27\gamma^{2} + 170} \right)\,\left( { - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170} \right)}}$$

It follows that \(SW^{T} \left( {\alpha > 0} \right) - SW^{T} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

A-2. Comparison between the equilibrium outcomes under OOAs \((\alpha > 0)\) and those in the absence of ownership \((\alpha = 0).\) The case of emission standard policy

$$\begin{gathered} s^{s} \left( {\alpha > 0} \right) - s^{s} \left( {\alpha = 0} \right) \hfill \\ = \frac{{33A - 66A\alpha + 9A\gamma + 33A\alpha^{2} - 9A\alpha^{2} \gamma }}{{ - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170}} - \frac{33A + 9A\gamma }{{27\gamma^{2} + 138\gamma + 170}} \hfill \\ \end{gathered}$$
$$= - \frac{{81A\alpha \gamma (6\gamma - 16\alpha + 5\alpha \gamma + 3\alpha \gamma^{2} + 16)}}{{(27\gamma^{2} + 138\gamma + 170)(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)\,}}$$

This result implies that \(s^{s} \left( {\alpha > 0.5} \right) - s^{s} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$\begin{gathered} q^{s} \left( {\alpha > 0} \right) - q^{s} \left( {\alpha = 0} \right) \hfill \\ = \frac{{ - 9A\left( {\alpha - 1} \right)\,\left( {3\gamma - 8\alpha + 8} \right)}}{{6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170}} - \frac{72A + 27A\gamma }{{27\gamma^{2} + 138\gamma + 170}} \hfill \\ \end{gathered}$$
$$= - \frac{{27A\alpha \gamma (138\gamma - 182\alpha + 27\gamma^{2} - 66\alpha \gamma + 182)}}{{(27\gamma^{2} + 138\gamma + 170)(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)\,}}$$

It follows that \(q^{s} \left( {\alpha > 0} \right) - q^{s} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$\begin{gathered} \pi_{1}^{s} \left( {\alpha > 0} \right) - \pi_{1}^{s} \left( {\alpha = 0} \right) \hfill \\ = 3A^{2} \frac{\begin{gathered} (1 - \alpha )(9\alpha^{3} \gamma^{2} + 1662\alpha^{3} \gamma - 2183\alpha^{3} - 1287\alpha^{2} \gamma^{2} \hfill \\ - 1662\alpha^{2} \gamma + 6549\alpha^{2} + 243\alpha \gamma^{3} + 963\alpha \gamma^{2} \hfill \\ - 1662\alpha \gamma - 6549\alpha + 315\gamma^{2} + 1662\gamma + 2183) \hfill \\ \end{gathered} }{{(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)^{2} }} - \frac{{3A^{2} (315\gamma^{2} + 1662\gamma + 2183)}}{{(27\gamma^{2} + 138\gamma + 170)^{2} }}. \hfill \\ \end{gathered}$$
$$\begin{gathered} \pi_{i}^{s} (\alpha > 0) - \pi_{i}^{s} (\alpha = 0) \hfill \\ = \frac{\begin{gathered} 81A^{2} \alpha \gamma ( - 243\alpha^{3} \gamma^{5} - 47\,358\alpha^{3} \gamma^{4} - 409\,599\alpha^{3} \gamma^{3} - 1176\,492\alpha^{3} \gamma^{2} - 1081\,508\alpha^{3} \gamma \hfill \\ + 70\,720\alpha^{3} + 34\,992\alpha^{2} \gamma^{5} + 447\,444\alpha^{2} \gamma^{4} + 2056\,572\alpha^{2} \gamma^{3} + 4041\,984\alpha^{2} \gamma^{2} + 2789\,008\alpha^{2} \gamma \hfill \\ - 212\,160\alpha^{2} - 6561\alpha \gamma^{6} - 127\,818\alpha \gamma^{5} - 878\,796\alpha \gamma^{4} - 2808\,918\alpha \gamma^{3} - 4238\,280\alpha \gamma^{2} - 2333\,492\alpha \gamma \hfill \\ + 212\,160\alpha + 6561\gamma^{6} + 84\,564\gamma^{5} + 433\,836\gamma^{4} + 1103\,004\gamma^{3} + 1372\,788\gamma^{2} + 625\,992\gamma - 70\,720 \hfill \\ \end{gathered} }{{(27\gamma^{2} + 138\gamma + 170)^{2} (6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)^{2} }} \hfill \\ \end{gathered}$$

A numerical simulation shows that \(\pi_{i}^{s} \left( {\alpha > 0} \right) - \pi_{i}^{s} \left( {\alpha = 0} \right) > 0\) for any \(- 1 < \gamma < 1.\)

$$\begin{gathered} a_{1}^{s} \left( {\alpha > 0} \right) - a_{1}^{s} \left( {\alpha = 0} \right) \hfill \\ = \frac{{3A\left( {1 - \alpha } \right)\,\left( {6\gamma - 13\alpha - 3\alpha \gamma + 13} \right)}}{{6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170}} - \frac{{3A\left( {6\gamma + 13} \right)}}{{27\gamma^{2} + 138\gamma + 170}} \hfill \\ \end{gathered}$$
$$= - \frac{{\gamma 27A\alpha (120\gamma - 134\alpha + 27\gamma^{2} - 81\alpha \gamma - 9\alpha \gamma^{2} + 134)}}{{27\gamma^{2} + 138\gamma + 170(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)}}.$$

This result implies that \(a_{1}^{s} \left( {\alpha > 0} \right) - a_{1}^{s} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$\begin{gathered} ED^{s} \left( {\alpha > 0} \right) - ED^{s} \left( {\alpha = 0} \right) \hfill \\ = \frac{4}{3}\left( {\frac{{33A - 66A\alpha + 9A\gamma + 33A\alpha^{2} - 9A\alpha^{2} \gamma }}{{ - 340\alpha + 138\gamma + 170\alpha^{2} + 27\gamma^{2} - 144\alpha \gamma + 6\alpha^{2} \gamma + 170}}} \right)^{2} - \frac{{12\left( {11A + 3A\gamma } \right)^{2} }}{{\left( {27\gamma^{2} + 138\gamma + 170} \right)^{2} }} \hfill \\ \end{gathered}$$

It follows that \(ED^{s} \left( {\alpha > 0} \right) - ED^{s} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$\begin{gathered} CS^{s} (\alpha > 0) - CS^{s} (\alpha = 0) \hfill \\ = (\gamma + 1)\left( {\frac{ - 9A(\alpha - 1)\,(3\gamma - 8\alpha + 8)}{{6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170}}} \right)^{2} - \frac{{81A^{2} (3\gamma + 8)^{2} (\gamma + 1)}}{{(138\gamma + 27\gamma^{2} + 170)^{2} }} \hfill \\ \end{gathered}$$
$$= - \frac{{243A^{2} \alpha \gamma (\gamma + 1)\left( \begin{gathered} - 15\,444\alpha^{3} \gamma^{3} - 152\,280\alpha^{3} \gamma^{2} - 482\,004\alpha^{3} \gamma - 495\,040\alpha^{3} + 11\,664\alpha^{2} \gamma^{4} \hfill \\ + 176\,256\alpha^{2} \gamma^{3} + 900\,720\alpha^{2} \gamma^{2} + 1926\,864\alpha^{2} \gamma + 1485\,120\alpha^{2} - 2187\alpha \gamma^{5} \hfill \\ - 56\,376\alpha \gamma^{4} - 435\,780\alpha \gamma^{3} - 1496\,664\alpha \gamma^{2} - 2407\,716\alpha \gamma - 1485\,120\alpha \hfill \\ + 4374\gamma^{5} + 56\,376\gamma^{4} + 290\,520\gamma^{3} + 748\,224\gamma^{2} + 962\,856\gamma + 495\,040 \hfill \\ \end{gathered} \right)}}{{(27\gamma^{2} + 138\gamma + 170)^{2} (6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)^{2} }}.$$

It follows that \(CS^{s} \left( {\alpha > 0} \right) - CS^{s} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

$$\begin{gathered} SW^{s} \left( {\alpha > 0} \right) - SW^{s} \left( {\alpha = 0} \right) \hfill \\ = \frac{{9A^{2} \left( {1 - \alpha } \right)\,\left( {3\gamma - 11\alpha + 3\alpha \gamma + 11} \right)}}{{6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170}} - \frac{{9A^{2} \left( {3\gamma + 11} \right)}}{{27\gamma^{2} + 138\gamma + 170}} \hfill \\ \end{gathered}$$
$$= - \frac{{\gamma 243A^{2} \alpha (6\gamma - 16\alpha + 5\alpha \gamma + 3\alpha \gamma^{2} + 16)}}{{(27\gamma^{2} + 138\gamma + 170)(6\alpha^{2} \gamma + 170\alpha^{2} - 144\alpha \gamma - 340\alpha + 27\gamma^{2} + 138\gamma + 170)}}$$

We thus have the result that \(SW^{s} \left( {\alpha > 0} \right) - SW^{s} \left( {\alpha = 0} \right) > 0\) when \(\gamma < 0.\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YM., Sellak, M. Strategic environmental policy in a differentiated duopoly with overlapping ownership: a welfare analysis. Environ Econ Policy Stud 26, 199–217 (2024). https://doi.org/10.1007/s10018-022-00343-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10018-022-00343-z

Keywords

JEL Classification

Navigation