The permafrost carbon feedback in DICE-2013R modeling and empirical results

Research Article
  • 58 Downloads

Abstract

Climate feedback mechanisms that have the potential to intensify global warming have been omitted almost completely in the integrated assessment of climate change and the economy so far. In the present paper, we incorporate the permafrost carbon feedback (PCF) into the well-known integrated assessment model DICE-2013R. We calibrate the parameters for our extended version of DICE-2013R and compute the optimal emission mitigation rates that maximize welfare. Our results indicate that accounting for the PCF leads to an increase in mitigation. Finally, we quantify the economic losses resulting from a climate policy which ignores the impacts of the PCF.

Keywords

Integrated assessment DICE model Climate feedbacks Permafrost 

JEL Classification

O44 Q54 Q58 

References

  1. Ackerman F, Stanton EA, Bueno R (2010) Fat tails, exponents, extreme uncertainty: simulating catastrophe in DICE. Ecol Econ 69:1657–1665CrossRefGoogle Scholar
  2. Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P, Hajima T, Ilyina T, Lindsay K, Tjiputra JF, Wu T (2013) Carbon–concentration and carbon–climate feedbacks in CMIP5 earth system models. J Clim 26:5289–5314CrossRefGoogle Scholar
  3. Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016) Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Change 6:751–758CrossRefGoogle Scholar
  4. Burke EJ, Hartley IP, Jones CD (2012) Uncertainties in global temperature change caused by carbon release from permafrost thawing. Cryosphere 6:1063–1076CrossRefGoogle Scholar
  5. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Doney VS, Eby MI, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Clim 19:3337–3353CrossRefGoogle Scholar
  6. Gonzáles-Eguino M, Neumann MB (2016) Significant implications of permafrost thawing for climate change control. Clim Change 136:381–388CrossRefGoogle Scholar
  7. Heinze C, Meyer S, Goris N, Anderson L, Steinfeldt R, Chang N, Le Quéré C, Bakker DCE (2015) The ocean carbon sink: impacts, vulnerabilities and challenges. Earth Syst Dyn 6:327–358CrossRefGoogle Scholar
  8. Hof AF, Hope CW, Lowe J, Mastrandrea MD, Meinshausen M, van Vuuren DP (2012) The benefits of climate change mitigation in integrated assessment models: the role of the carbon cycle and climate component. Clim Change 113:897–917CrossRefGoogle Scholar
  9. IPCC (2013) Summary for policymakers. In: TF Stocker, Qin D, GK Plattner, Tignor M, SK Allen, Boschung J, Nauels A, Xia Y, Bex V, PM Midgley (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  10. Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic growth. J Environ Econ Manag 48:723–741CrossRefGoogle Scholar
  11. Koven CD, Lawrence DM, Riley WJ (2015) Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc Natl Acad Sci USA 112:3752–3757Google Scholar
  12. Lemoine D, Traeger CP (2014) Watch your step: optimal policy in a tipping climate. Am Econ J Econ Policy 6:137–166CrossRefGoogle Scholar
  13. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. P Natl Acad Sci USA 105:1786–1793CrossRefGoogle Scholar
  14. MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback Nat. Geosci. 5:719–721Google Scholar
  15. Mastrandrea MD, Michael D, Schneider SH (2001) Integrated assessment of abrupt climate changes. Clim Policy 1:433–449CrossRefGoogle Scholar
  16. Nordhaus WD (1994) Managing the global commons. The MIT Press, CambridgeGoogle Scholar
  17. Nordhaus WD (2008) A question of balance: weighing the options on global warming policies. Yale University Press, New HavenGoogle Scholar
  18. Nordhaus WD (2013) The climate Casino risk, uncertainty and economics for a warming world. Yale University Press, New HavenGoogle Scholar
  19. Nordhaus WD, Sztorc P (2013) DICE 2013R: introduction and user’s manual. Second edn. http://www.econ.yale.edu/~nordhaus/homepage/documents/DICE_Manual_103113r2/pdf. Accessed 19 May 2016
  20. Pindyck RS (2013) Climate change policy: what do the models tell us? J Econ Lit 51:860–872CrossRefGoogle Scholar
  21. Rezai A (2010) Recast the DICE and its policy recommendations. Macroecon Dyn 14:275–289CrossRefGoogle Scholar
  22. Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63:165–180CrossRefGoogle Scholar
  23. Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environ Res Lett 9:085003CrossRefGoogle Scholar
  24. Schneider von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 9:649–665CrossRefGoogle Scholar
  25. Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179CrossRefGoogle Scholar
  26. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023Google Scholar
  27. van Vuuren DP, Edmonds J, Kainuma MLT, Riahi K, Thomson A, Matsui T, Hurtt G, Lamarque JF, Meinshausen M, Smith S, Grainer C, Rose S, Hibbard KA, Nakicenovic N, Krey V, Kram T (2011) The representative concentration pathways: an overwiev. Clim Change 109:5–31CrossRefGoogle Scholar
  28. Weitzman ML (2010) GHG Targets as insurance against catastrophic climate damages. J Publ Econ Theory 14:221–244CrossRefGoogle Scholar
  29. Wolff EW, Shepherd JG, Shuckburgh E, Watson AJ (2015) Feedbacks on climate in the earth system: introduction. Philos T Roy Soc S-A 373:20140428CrossRefGoogle Scholar

Copyright information

© Society for Environmental Economics and Policy Studies and Springer Japan 2017

Authors and Affiliations

  • Heiko Wirths
    • 1
  • Joachim Rathmann
    • 2
  • Peter Michaelis
    • 1
  1. 1.Faculty of Business and EconomicsUniversity of AugsburgAugsburgGermany
  2. 2.Faculty of Applied Computer ScienceInstitute of GeographyUniversity of AugsburgAugsburgGermany

Personalised recommendations