Skip to main content

Environmental liability law and R&D subsidies: results on the screening of firms and the use of uniform policy

Abstract

This paper analyzes both R&D in pollution control technology and pollution abatement by firms that are subject to environmental liability law (either strict liability or negligence) and are granted R&D subsidies. Firms differ in their R&D costs (private information) and experience technology spillovers. Policy makers may induce first-best abatement and R&D levels despite asymmetric information by graduating policy instruments to screen firms. The chances of implementing first-best activity levels by such means differ under strict liability and negligence, and examples suggest that negligence performs better. The paper also studies the case in which uniform policy levels are imposed on heterogeneous firms, showing that strict liability tends to outperform negligence from a social welfare perspective in this scenario.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. In this paper, we assume technical change to be the result of investment in R&D. An alternative assumption might be that technical progress is achieved via learning by doing. See Clark et al. (2008) for more on the economic theory of these alternative assumptions and on their practical applications.

  2. The practical importance of environmental liability is evident in many real-world contexts. For instance, the 1988 Exxon Valdez disaster prompted the 1990 Oil Pollution Act, under which the owners of tankers involved in oil spills in US waters face massive liability. Another example is the Deepwater Horizon oil spill catastrophe which occurred in April 2010 in the Gulf of Mexico. At that time, eleven workers lost their lives to a fire on the platform and about 800 million liters of oil were spilled into the Gulf. To date, British Patrol paid damages of 3.84 billion USD. The company expects to be liable for more than another 5 billions USD (see Kennedy and Cheong 2013). In addition to such notorious cases, liability law is similarly important in smaller cases. A well-researched case-in-point is litigation based on the US “Superfund” legislation. For instance, Chang and Sigman (2007, 2014) have recently conducted empirical research related to this issue.

  3. For instance, the Environmental Liability Directive of the European Union (Directive 2004/35/CE) lists activities subject to strict liability; other activities are subject to negligence.

  4. R&D subsidies are often provided by means of tax credits and are commonly used in the United States, the United Kingdom, and Germany, among other countries.

  5. We focus on regulatory effects resulting from environmental liability law and thus abstract from strategic effects resulting from market interactions (which are dealt with in, e.g., Puller (2006)).

  6. The authors gratefully acknowledge the useful information and insightful discussion that Prof. Michael Faure, LL.M., University of Maastricht, provided on this issue in personal communication.

  7. An overview of instruments to cope with the problem of spillovers is provided by Martin and Scott (2000).

  8. Endres et al. (2008) similarly consider technology spillovers and environmental liability law. However, there are two central differences that set the present paper apart. First, we allow for a second policy instrument besides environmental liability law, namely R&D subsidies. Second, we incorporate heterogeneous firms with private cost structure information.

  9. Progress in abatement technology is usually modeled as a downward shift in marginal abatement costs. Recently, it has been argued that some technical change can differently affect marginal abatement costs (see Amir et al. 2008; Bauman et al. 2008; Bréchet and Jouvet 2008; Baker et al. 2006, 2008; Baker and Adu-Bonnah 2008; Baker and Shittu 2006, 2008; Endres and Friehe 2013). For simplicity, we focus on the “traditional” kind of technical change. Another stylization assumes technical change to have an impact on environmental damage in addition to the one on abatement cost (see Endres and Friehe 2012 as well as Jacob 2015 for this variant which is ignored in the present paper for simplicity).

  10. This is shown in Appendix 1.

  11. This is established in Appendix 2.

  12. However, we confine our analysis of the screening scenario to the case of “perfect screening.” How the policy maker may screen firms without insisting on implementation of first-best abatement and R&D levels is a topic left for future research.

  13. In a related analysis, Friehe (2009) discusses a policy maker seeking to screen accident victims with different harm levels in a tort setting.

  14. For a more detailed formal argument, see Appendix 3.

  15. See Appendix 4 for a formal argument.

  16. See Appendix 5 for a formal argument.

  17. See Appendix 6 for a derivation.

  18. See Appendix 7 for a derivation.

References

  • Allan C, Jaffe AB, Sin I (2014) Diffusion of green technology: a survey. Int Rev Environ Resour Econ 7:1–33

    Article  Google Scholar 

  • Amir R, Germain M, van Steenberghe V (2008) On the impact of innovation on the marginal abatement cost curve. J Public Econ Theory 10:985–1010

    Article  Google Scholar 

  • Baker E, Clarke L, Weyant J (2006) Optimal technology R&D in the face of climate uncertainty. Clim Change 78:157–179

    Article  Google Scholar 

  • Baker E, Shittu E (2006) Profit-maximizing R&D in response to a random carbon tax. Resour Energy Econ 28:160–180

    Article  Google Scholar 

  • Baker E, Adu-Bonnah K (2008) Investment in risky R&D programs in the face of climate uncertainty. Energy Econ 30:465–486

    Article  Google Scholar 

  • Baker E, Clarke L, Shittu E (2008) Technical change and the marginal cost of abatement. Energy Econ 30:2799–2816

    Article  Google Scholar 

  • Baker E, Shittu E (2008) Uncertainty and endogenous technical change in climate policy models. Energy Econ 30:2817–2828

    Article  Google Scholar 

  • Bartsch E (1997) Legal claims for environmental damages under uncertain causality and asymmetric information. Finanzarchiv 54:68–88

    Google Scholar 

  • Bauman Y, Lee M, Seeley K (2008) Does technological innovation really reduce marginal abatement costs? Some theory, algebraic evidence, and policy implications. Environ Resour Econ 39:507–527

    Article  Google Scholar 

  • Bennear LS, Stavins RN (2007) Second-best theory and the use of multiple policy instruments. Environ Resour Econ 37:111–129

    Article  Google Scholar 

  • Bentata P, Faure M (2012) The role of environmental civil liability: an economic analysis of the French legal system. Environ Liabil 20:120–128

    Google Scholar 

  • Bentata P (2014) Liability as a complement to environmental regulation: an empirical study of the French legal system. Environ Econ Policy Studies 16:201–228

    Article  Google Scholar 

  • Bréchet T, Jouvet PA (2008) Environmental innovation and the cost of pollution abatement revisited. Ecol Econ 65:262–265

    Article  Google Scholar 

  • Burrows P (1999) Combining regulation and legal liability for the control of external costs. Int Rev Law Econ 19:227–244

    Article  Google Scholar 

  • Calcott P, Hutton S (2006) The choice of a liability regime when there is a regulatory gatekeeper. J Environ Econ Manag 51:153–164

    Article  Google Scholar 

  • Chang HF, Sigman H (2007) The effect of joint and several liability under superfund on brownfields. Int Rev Law Econ 27:363–384

    Article  Google Scholar 

  • Chang HF, Sigman H (2014) An empirical analysis of cost recovery in superfund cases: implications for brownfields and joint and several liability. J Empir Legal Studies 11:477–504

    Article  Google Scholar 

  • Clark C, Weyant J, Edmonds J (2008) On the sources of technological change: what do the models assume? Energy Econ 30:409–424

    Article  Google Scholar 

  • Cropper ML, Oates WE (1992) Environmental economics: a survey. J Econ Lit 30:675–740

    Google Scholar 

  • Endres A, Bertram R (2006) The development of care technology under liability law. Int Rev Law Econ 26:503–518

    Article  Google Scholar 

  • Endres A, Bertram R, Rundshagen B (2007) Environmental liability and induced technical change—the role of discounting. Environ Resour Econ 36:341–366

    Article  Google Scholar 

  • Endres A, Rundshagen B, Bertram R (2008) Environmental liability law and induced technical change—the role of spillovers. J Inst Theor Econ 164:254–279

    Article  Google Scholar 

  • Endres A (2011) Environmental Economics—theory and policy. Cambridge University Press, Cambridge

    Google Scholar 

  • Endres A, Friehe T (2011a) R&D and abatement under environmental liability law: comparing incentives under strict liability and negligence if compensation differs from harm. Energy Econ 33:419–425

    Article  Google Scholar 

  • Endres A, Friehe T (2011b) Incentives to diffuse advanced abatement technology under environmental liability law. J Environ Econ Manag 62:30–40

    Article  Google Scholar 

  • Endres A, Friehe T (2012) Generalized progress of abatement technology: incentives under environmental liability law. Environ Resour Econ 53:61–71

    Article  Google Scholar 

  • Endres A, Friehe T (2013) Led on the wrong track? A note on the direction of technical change under environmental liability law. J Public Econ Theory 15:506–518

    Article  Google Scholar 

  • Endres A, Rundshagen B (2013) Incentives to diffuse advanced abatement technology under the formation of international environmental agreements. Environ Resour Econ 56:177–210

    Article  Google Scholar 

  • Endres A, Friehe T, Rundshagen B (2015) “It’s all in the mix!” Internalizing externalities with R&D subsidies and environmental liability. Soc Choice Welfare 44:151–178

    Article  Google Scholar 

  • Faure M (2007) Economic analysis of tort and regulatory law. In: van Boom WH, Lukas M, Kissling C (eds) Tort and regulatory law. Springer, Berlin, pp 399–415

    Google Scholar 

  • Faure M (2014) The complementary roles of liability, regulation and insurance in safety management: theory and practice. J Risk Res 17:689–707

    Article  Google Scholar 

  • Faure M, Van den Bergh R (1987) Negligence, strict liability and regulation of safety under belgian law: an introductory economic analysis. Geneva Papers Risk Insur 12:95–114

    Google Scholar 

  • Faure M, Wang H (2010) Civil liability and compensation for marine pollution - lessons to be learned for offshore oil spills. Oil Gas Energy Law Intell 8:1–27

    Google Scholar 

  • Fischer C, Newell RG (2008) Environmental and technology policies for climate mitigation. J Environ Econ Manag 55:142–162

    Article  Google Scholar 

  • Fischer C, Parry IWH, Pizer WA (2003) Instrument choice for environmental protection when technological innovation is endogenous. J Environ Econ Manag 45:523–545

    Article  Google Scholar 

  • Friehe T (2009) Screening accident victims. Int Rev Law Econ 29:272–280

    Article  Google Scholar 

  • Jacob J (2015) Innovation in risky industries under liability law: the case of double-impact innovations. J Inst Theor Econ (forthcoming)

  • Jaffe AB, Newell RG, Stavins RN (2005) A tale of two market failures: technology and environmental policy. Ecol Econ 54:164174

    Article  Google Scholar 

  • Katsoulacos Y, Xepapadeas A (1996) Environmental innovation, spillovers and optimal policy rules. In: Carraro C, Katsoulacos Y, Xepapadeas A (eds) Environmental policy and market structure. Kluwer, Dordrecht, pp 143–150

    Chapter  Google Scholar 

  • Kennedy CJ, Cheong S (2013) Lost ecosystem services as a measure of oil spill damages: a conceptual analysis of the importance of baselines. J Environ Manag 128:43–51

    Article  Google Scholar 

  • Laffont JJ, Martimort D (2002) The theory of incentives. Princeton University Press, Princeton

    Google Scholar 

  • Martin S, Scott JT (2000) The nature of innovation market failure and the design of public support for private innovation. Res Policy 29:437–447

    Article  Google Scholar 

  • Miceli TJ (2006) On negligence rules and self-selection. Rev Law Econ 2 (Article 1)

  • Parry IWH (1998) Pollution regulation and the efficiency gains from technological innovation. J Regul Econ 14:229–254

    Article  Google Scholar 

  • Parry IWH (2003) On the implications of technological innovation for environmental policy. Environ Dev Econ 8:57–76

    Article  Google Scholar 

  • Puller SL (2006) The strategic use of innovation to influence regulatory standards. J Environ Econ Manag 52:690–706

    Article  Google Scholar 

  • Requate T, Unold W (2003) Environmental policy incentives to adopt advanced abatement technology: will the true ranking please stand up? Eur Econ Rev 47:125–176

    Article  Google Scholar 

  • Requate T (2005) Dynamic incentives by environmental policy instruments—a survey. Ecol Econ 54:175–195

    Article  Google Scholar 

  • Shavell S (2007) Liability for Accidents. In: Polinsky AM, Shavell S (eds) Handbook of law and economics 1. Elsevier, Amsterdam, pp 139–182

    Google Scholar 

  • Ulph A, Ulph D (2007) Climate change—environmental and technology policies in a strategic context. Environ Resour Econ 37:159–180

    Article  Google Scholar 

  • Xepapadeas A (1997) Advanced principles in environmental policy. Edward Elgar, Cheltenham

    Google Scholar 

  • Youssef SB, Zaccour G (2014) Absorptive capacity, R&D-spillovers, emissions taxes and R&D subsidies. Strateg Behav Environ 4:41–58

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Michael Faure, University of Maastricht, Frederik Schaff, University of Hagen, the editor-in-charge, Takayoshi Shinkuma, and two anonymous referees for their helpful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Endres.

Appendices

Appendix 1

In Sect. 2, we propose that \(x^{\rm FB}_{\rm L}>x^{\rm FB}_{\rm H}\) and \(r^{\rm FB}_{\rm L}>r^{\rm FB}_{\rm H}\). This may be established by assuming otherwise and showing a contradiction.

  1. (i)

    Suppose that \(x^{\rm FB}_{\rm L}<x^{\rm FB}_{\rm H}\), then \(C_x(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L})=-D'(x^{\rm FB}_{\rm L})>-D'(x^{\rm FB}_{\rm H})=C_{x}(x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H})\) holds using (3). Given that \(C_{xx}>0\), \(C_x(x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H})> C_x(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm H})\). This leads to \(C_x(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L})>C_x(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm H})\). This would imply that \(T^{\rm FB}_{\rm L}<T^{\rm FB}_{\rm H}\) (i.e., that \(r^{\rm FB}_{\rm H}>r^{\rm FB}_{\rm L}\)) because \(C_{xT}<0\). Social costs cannot be minimal at such a vector of individual behavior \((x_{\rm L},x_{\rm H},r_{\rm L},r_{\rm H})=(x^{\rm FB}_{\rm L},x^{\rm FB}_{\rm H},r^{\rm FB}_{\rm L},r^{\rm FB}_{\rm H})\) because costs would be lower when firms behave according to \((x_{\rm L},x_{\rm H},r_{\rm L},r_{\rm H})=(x^{\rm FB}_{\rm H},x^{\rm FB}_{\rm L},r^{\rm FB}_{\rm H},r^{\rm FB}_{\rm L})\). In detail, we obtain

    $$\begin{aligned}&C\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) +D\left( x^{\rm FB}_{\rm L}\right) +Lr^{\rm FB}_{\rm L}+C\left( x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H}\right) +D\left( x^{\rm FB}_{\rm H}\right) +Hr^{\rm FB}_{\rm H} \nonumber \\&\qquad -\left( C\left( x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H}\right) +D\left( x^{\rm FB}_{\rm H}\right) +Lr^{\rm FB}_{\rm H}+C\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) +D\left( x^{\rm FB}_{\rm L}\right) +Hr^{\rm FB}_{\rm L}\right) \nonumber \\&\quad =(H-L)\left( r^{\rm FB}_{\rm H}-r^{\rm FB}_{\rm L}\right) >0. \end{aligned}$$
    (30)
  2. (ii)

    Suppose that \(x^{\rm FB}_{\rm L}=x^{\rm FB}_{\rm H}\), then (3) implies that \(r^{\rm FB}_{\rm L}=r^{\rm FB}_{\rm H}\). Using these levels in (2) would imply \(H=L\), which contradicts a central assumption of our framework. From (i) and (ii), we know that \(x^{\rm FB}_{\rm L}>x^{\rm FB}_{\rm H}\) must hold. Since \(C_{x}(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L})=-D'(x^{\rm FB}_{\rm L})<-D'(x^{\rm FB}_{\rm H})=C_{x}(x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H})< C_{x}(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm H})\), we conclude that \(r^{\rm FB}_{\rm L}>r^{\rm FB}_{\rm H}\).

Appendix 2

The first-best level of the subsidy is given by \(s^{\rm FB}_{i}=-\alpha C_{T}(x^{\rm FB}_{j},T^{\rm FB}_{j})\). Accordingly, the ranking \(s^{\rm FB}_{\rm L}>s^{\rm FB}_{\rm H}\) follows when \(-C_{T}(x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H})>-C_{T}(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L})\). Restating condition (2) gives

$$\begin{aligned} L&=-C_{T}\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) -\alpha C_{T}\left( x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H}\right) =-C_{T}\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) \nonumber \\&\quad \left[ 1 +\alpha C_{T}\left( x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H}\right) /C_{T}\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) \right] \end{aligned}$$
(31)
$$\begin{aligned} H&=-C_{T}\left( x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H}\right) -\alpha C_{T}\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) =-C_{T}\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) \nonumber \\&\quad \left[ \alpha +C_{T}\left( x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H}\right) /C_{T}\left( x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L}\right) \right] . \end{aligned}$$
(32)

Using \(L<H\) implies \(1+\alpha C_{T}(x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H})/C_{T}(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L})<\alpha +C_{T}(x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H})/C_{T}(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L})\), which in turn explains \(-C_{T}(x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H})>-C_{\rm T}(x^{\rm FB}_{\rm L},T^{\rm FB}_{\rm L})\).

Appendix 3

Under strict liability, firm L finds it privately optimal to select \((x^{\rm FB}_{\rm L},r^{\rm FB}_{\rm L})\) because \(U_{\rm L}=\hbox {min}\{U_{\rm L},V_{\rm L},W_{\rm L}\}\). The ranking \(U_{\rm L}<V_{\rm L}\) follows from

$$\begin{aligned} U_{\rm L}&=C\left( \bar{x}(T^{\rm FB}_{\rm L}),T^{\rm FB}_{\rm L}\right) +D\left( \bar{x}\left( T^{\rm FB}_{\rm L}\right) \right) +\left( L-s^{\rm FB}_{\rm L}\right) r^{\rm FB}_{\rm L} \nonumber \\&=\min _{r_{\rm L}}\left\{ C\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) ,r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) +D\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) \right) +\left( L-s^{\rm FB}_{\rm L}\right) r_{\rm L}\right\} \nonumber \\&<\min _{r_{\rm L}}\left\{ C\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) ,r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) +D\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) \right) +\left( L-s^{\rm FB}_{\rm H}\right) r_{\rm L}\right\} \le V_{\rm L}. \end{aligned}$$
(33)

The ranking \(U_{\rm L}<W_{\rm L}\) follows from

$$\begin{aligned} U_{\rm L}&=\min _{r_{\rm L}}\left\{ C\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) ,r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) +D\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) \right) +\left( L-s^{\rm FB}_{\rm L}\right) r_{\rm L}\right\} \nonumber \\&<\min _{r_{\rm L}}\left\{ C\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) ,r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) +D\left( \bar{x}\left( r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) \right) +Lr_{\rm L}\right\} \le W_{\rm L}. \end{aligned}$$
(34)

Firm H optimizes given \(r_{\rm L}=r^{\rm FB}_{\rm L}\). The ranking \(U_{\rm H}<W_{\rm H}\) follows from

$$\begin{aligned} U_{\rm H}&=\min _{r_{\rm H}}\left\{ C\left( \bar{x}\left( r_{\rm H}+\alpha r^{\rm FB}_{\rm L}\right) ,r_{\rm H}+\alpha r^{\rm FB}_{\rm L}\right) +D\left( \bar{x}\left( r_{\rm H}+\alpha r^{\rm FB}_{\rm L}\right) \right) +\left( H-s^{\rm FB}_{\rm H}\right) r_{\rm H}\right\} \nonumber \\&<\min _{r_{\rm H}}\left\{ C\left( \bar{x}(r_{\rm H}+\alpha r^{\rm FB}_{\rm L}),r_{\rm H}+\alpha r^{\rm FB}_{\rm L}\right) +D\left( \bar{x}\left( r_{\rm H}+\alpha r^{\rm FB}_{\rm L}\right) \right) +Hr_{\rm H}\right\} \le W_{\rm H}. \end{aligned}$$
(35)

However, it may be that \(V_{\rm H}<U_{\rm H}\), i.e., that firm H finds it privately optimal to mimic firm L. There are no incentives to mimic when

$$\begin{aligned} U_{\rm H}&=C\left( x^{\rm FB}_{\rm H},T^{\rm FB}_{\rm H}\right) +D\left( x^{\rm FB}_{\rm H}\right) +(H-s_{\rm H})r^{\rm FB}_{\rm H} \nonumber \\&<C\left( \bar{x}\left( (1+\alpha ) r^{\rm FB}_{\rm L}\right) ,(1+\alpha ) r^{\rm FB}_{\rm L}\right) +D\left( \bar{x}((1+\alpha ) r^{\rm FB}_{\rm L})\right) +\left( H-s^{\rm FB}_{\rm L}\right) r^{\rm FB}_{\rm L}=V_{\rm H}. \end{aligned}$$
(36)

Appendix 4

In the following analysis, we argue that firm L chooses \(x_{\rm L}\) from the set \([x^{\rm FB}_{\rm H},x^{\rm FB}_{\rm L}]\) and \(r_{\rm L}\) from the set \([r^{\rm FB}_{\rm H},r^{\rm FB}_{\rm L}]\). (i) Firm L chooses abatement at least as high as \(x^{\rm FB}_{\rm H}\) because

$$\begin{aligned} \min _{x_{\rm L}<x^{\rm FB}_{\rm H}}\left\{ C\left( x_{\rm L},r_{\rm L}+\alpha r^{\rm FB}_{\rm H}\right) +D(x_{\rm L})+(L-s(r_{\rm L}))r_{\rm L}\right\} >U_{\rm L}>\hbox {PC}_{\rm L}^{\rm SN}\left( x^{\rm FB}_{\rm L},r^{\rm FB}_{\rm L}\right) . \end{aligned}$$
(37)

(ii) Firm L chooses R&D at least as high as \(r^{\rm FB}_{\rm H}\) because firm H does so under strict liability (see Proposition 1). This ensures that \(r_{\rm L}\ge r^{\rm FB}_{\rm H}\) because firm L enjoys a lower spillover than firm H (\(\alpha r^{\rm FB}_{\rm H}<\alpha r^{\rm FB}_{\rm L}\)), firm L bears lower R&D costs, and \(r_{\rm L}\) falling short of \(r^{\rm FB}_{\rm H}\) would mean that firm L would receive no subsidy at all. (iii) The privately optimal levels will not exceed \((x^{\rm FB}_{\rm L},r^{\rm FB}_{\rm L})\) because marginal benefits of choosing higher levels are smaller under the negligence regime than under strict liability. (iv) When firm L selects \(x_{\rm L}=x^{\rm FB}_{\rm L}\), it will select \(r^{\rm FB}_{\rm L}\). This follows from the analysis of strict liability.

Appendix 5

In the following analysis, we argue that firm H chooses \(x_{\rm H}\) from the set \([x^{\rm FB}_{\rm H},x^{\rm FB}_{\rm L}]\) and \(r_{\rm H}\) from the set \([r^{\rm FB}_{\rm H},r^{\rm FB}_{\rm L}]\). (i) Firm H chooses at least \((x^{\rm FB}_{\rm H},r^{\rm FB}_{\rm H})\) because

$$\begin{aligned}&\min _{x_{\rm H},r_{\rm H}}\left\{ C\left( x_{\rm H},r_{\rm H}+\alpha r^{\rm FB}_{\rm L}\right) +\hbox {LL}(x_{\rm H})+(H-s(r_{\rm H}))r_{\rm H}\right\} \nonumber \\&\quad <\min _{x_{\rm H},r_{\rm H}}\left\{ C\left( x_{\rm H},r_{\rm H}+\alpha r^{\rm FB}_{\rm L}\right) +D(x_{\rm H})+(H-s(r_{\rm H}))r_{\rm H}\right\} \nonumber \\&\quad =\min \{U_{\rm H},V_{\rm H},W_{\rm H}\}<W_{\rm H}, \end{aligned}$$
(38)

where \(W_{\rm H}\) is implied by activity levels below \((x^{\rm FB}_{\rm H},r^{\rm FB}_{\rm H})\). (ii) Firm H chooses weakly less than \((x^{\rm FB}_{\rm L},r^{\rm FB}_{\rm L})\). This has been established for firm L above and clearly also holds for firm H. (iii) Firm H choosing \(r^{\rm FB}_{\rm H}\) is inconsistent with firm H choosing \(x_{\rm H}\) from the interval \((x^{\rm FB}_{\rm H},x^{\rm FB}_{\rm L})\). This results from

$$\begin{aligned} \hbox {arg min}_{x_{\rm H}\in X}\left\{ C\left( x_{\rm H},T^{\rm FB}_{\rm H}\right) +\delta D(x_{\rm H})\right\} \le \hbox {arg min}_{x_{\rm H}\in X}\left\{ C(x_{\rm H},T^{\rm FB}_{\rm H})+D(x_{\rm H})\right\} =x^{\rm FB}_{\rm H}. \end{aligned}$$
(39)

The firm will either remain at \(x^{\rm FB}_{\rm H}\) or implement \(x^{\rm FB}_{\rm L}\). (iv) When firm H chooses \(x_{\rm H}\) from \(X\) and \(r_{\rm H}\) from \(R\), it will always select the combination of activity levels \((x^{\rm FB}_{\rm H},r^{\rm FB}_{\rm H})\).

Appendix 6

When firms are subject to strict liability, the privately optimal R&D levels change with the level of the uniform subsidy according to

$$\begin{aligned} \frac{\hbox {d}r^*_{\rm L}}{\hbox {d}s}&=\frac{1}{Z} \left[ C_{T_{\rm H} x_{\rm H}}\frac{\hbox {d}x_{\rm H}}{\hbox {d}T_{\rm H}}+C_{T_{\rm H}T_{\rm H}}-\alpha C_{T_{\rm L} x_{\rm L}}\frac{\hbox {d}x_{\rm L}}{\hbox {d}T_{\rm L}}-\alpha C_{T_{\rm L}T_{\rm L}}\right] \end{aligned}$$
(40)
$$\begin{aligned} \frac{\hbox {d}r^*_{\rm H}}{\hbox {d}s}&=\frac{1}{Z} \left[ C_{T_{\rm L} x_{\rm L}}\frac{\hbox {d}x_{\rm L}}{\hbox {d}T_{\rm L}}+C_{T_{\rm L}T_{\rm L}}-\alpha C_{T_{\rm H} x_{\rm H}}\frac{\hbox {d}x_{\rm H}}{\hbox {d}T_{\rm H}}-\alpha C_{T_{\rm H}T_{\rm H}}\right] , \end{aligned}$$
(41)

where \(Z>0\) is the determinant of the according Hessian matrix.

Appendix 7

When firms are subject to negligence, the privately optimal R&D levels change with the level of the uniform subsidy according to

$$\begin{aligned} \frac{\hbox {d}\bar{\bar{r}}_{\rm L}}{\hbox {d}s^N}&=\frac{1}{Z} \left[ C_{T_{\rm H} T_{\rm H}}-\alpha C_{T_{\rm L} T_{\rm L}}\right] \end{aligned}$$
(42)
$$\begin{aligned} \frac{\hbox {d}\bar{\bar{r}}_{\rm H}}{\hbox {d}s^N}&=\frac{1}{Z} \left[ C_{T_{\rm L} T_{\rm L}}-\alpha C_{T_{\rm H} T_{\rm H}}\right] , \end{aligned}$$
(43)

where \(Z>0\) is the determinant of the according Hessian matrix.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Endres, A., Friehe, T. & Rundshagen, B. Environmental liability law and R&D subsidies: results on the screening of firms and the use of uniform policy. Environ Econ Policy Stud 17, 521–541 (2015). https://doi.org/10.1007/s10018-015-0103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10018-015-0103-8

Keywords

  • Environmental liability law
  • Emission abatement technology
  • R&D subsidy

JEL Classification

  • K 13
  • Q 58