Skip to main content
Log in

Gene Therapy for Chronic Peripheral Arterial Disease: What Role for the Vascular Surgeon?

  • General Reviews
  • Published:
Annals of Vascular Surgery

Abstract

The incidence of peripheral arterial disease is rising and despite advances in clinical management, many problems remain unsolved. Better knowledge of the mechanisms and consequences associated with chronic muscle ischemia has opened the way for development of new treatment strategies, including therapeutic angiogenesis. Therapeutic angiogenesis is a promising technique based on experimental studies showing that growth factors or genes able to increase capillary density can be used to reduce the impact of muscle ischemia and increase blood flow to ischemic tissue. Enthusiasm for this technique has prompted numerous clinical trials with encouraging results, but data are still inconclusive. Optimal indications for gene therapy must be defined and further experimental progress is needed to respond to ethical issues. Therapeutic angiogenesis should be viewed as an adjunct to rather than as a competitor of current surgical revascularization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  1. WR Hiatt (2001) ArticleTitleMedical treatment of peripheral arterial disease and claudication N. Engl. J. Med. 344 1608–1621

    Google Scholar 

  2. JD Beard (2000) ArticleTitleABC of arterial and venous disease: chronic lower limb ischemia B.M.J. 320 854–857

    Google Scholar 

  3. P Carmeliet (2000) ArticleTitleMechanisms of angiogenesis and arteriogenesis Nat. Med. 6 389–395

    Google Scholar 

  4. W Schaper WD Ito (1996) ArticleTitleMolecular mechanisms of coronary collateral vessel growth Circ. Res. 79 911–919

    Google Scholar 

  5. JM Isner K Walsh J Symes et al. (1996) ArticleTitleArterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease Hum. Gene Ther. 7 959–988

    Google Scholar 

  6. JM Isner (1996) ArticleTitleTherapeutic angiogenesis: a new frontier for vascular therapy Vasc. Med. 1 79–87

    Google Scholar 

  7. IM Verma N Somia (1997) ArticleTitleGene therapy: promises, problems and prospects Nature 389 239–242

    Google Scholar 

  8. Y Tsurumi S Takeshita D Chen et al. (1996) ArticleTitleDirect intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion Circulation 94 3281–3290

    Google Scholar 

  9. MJ Mann AD Whittemore MC Donaldson et al. (1999) ArticleTitleEx-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre randomised, controlled trial Lancet 354 1493–1498

    Google Scholar 

  10. S Takeshita LP Zheng E Brogi et al. (1994) ArticleTitleTherapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model J. Clin. Invest. 93 662–670

    Google Scholar 

  11. C Bauters T Asahara LP Zheng et al. (1994) ArticleTitlePhysiologic assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb Am. J. Physiol. 267 H1263–H1271

    Google Scholar 

  12. R Baffour J Berman JL Garb et al. (1992) ArticleTitleEnhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor J. Vasc. Surg. 16 181–191

    Google Scholar 

  13. TK Rosengart KT Budenbender M Duenas et al. (1997) ArticleTitleTherapeutic angiogenesis: a comparative study of the angiogenic potential of acidic fibroblast growth factor and heparin J. Vasc. Surg. 26 302–312

    Google Scholar 

  14. T Asahara C Bauters LP Zheng et al. (1995) ArticleTitleSynergistic effect of vascular endothelial growth factor and basic growth factor on angiogenesis in vivo Circulation 92 IssueIDSuppl II 365–371

    Google Scholar 

  15. DF Lazarous EF Unger SE Epstein et al. (2000) ArticleTitleBasic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial J. Am. Coll. Cardiol. 36 1239–1244

    Google Scholar 

  16. RJ Lederman FO Mendelsohn RD Anderson et al. (2002) ArticleTitleTherapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial Lancet 359 2053–2058

    Google Scholar 

  17. R Morishita S Nakamura S Hayashi et al. (1999) ArticleTitleTherapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy Hypertension 33 1379–1384

    Google Scholar 

  18. T Murohara T Asahara M Silver et al. (1998) ArticleTitleNitric oxide synthase modulates angiogenesis in response to tissue ischemia J. Clin. Invest. 101 2567–2578

    Google Scholar 

  19. JS Silvestre Z Mallat M Duriez et al. (2000) ArticleTitleAntiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb Circ. Res. 87 448–452

    Google Scholar 

  20. Z Mallat JS Silvestre S Le Ricousse-Roussanne et al. (2002) ArticleTitleInterleukin-18/interleukin-18 binding protein signaling modulates ischemia-induced neovascularization in mice hindlimb Circ. Res. 91 441–448

    Google Scholar 

  21. FA Le Noble JW Hekking HW Straaten Particlevan et al. (1991) ArticleTitleAngiotensin II stimulates angiogenesis in the chorio-allantoic membrane of the chick embryo Eur. J. Pharmacol. 195 305–306

    Google Scholar 

  22. FA Le Noble NH Schreurs HW Straaten Particlevan et al. (1993) ArticleTitleEvidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane Am. J. Physiol. 264 460–465

    Google Scholar 

  23. DA Walsh DE Hu J Wharton et al. (1997) ArticleTitleSequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma Br. J. Pharmacol. 120 1302–1311

    Google Scholar 

  24. P Gohlke I Kuwer A Schnell et al. (1997) ArticleTitleBlockade of bradykinin B2 receptors prevents the increase in capillary density induced by chronic angiotensin-converting enzyme inhibitor treatment in stroke-prone spontaneously hypertensive rats Hypertension 29 478–482

    Google Scholar 

  25. JE Fabre A Rivard M Magner et al. (1999) ArticleTitleTissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo Circulation 99 3043–3049

    Google Scholar 

  26. JS Silvestre S Bergaya R Tamarat et al. (2001) ArticleTitleProangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway Circ. Res. 89 678–683

    Google Scholar 

  27. S Takeshita Y Tsurumi T Couffinhal et al. (1996) ArticleTitleGene transfert of naked DNA encoding for three isoforms, of vascular endothelial growth factor stimulates collateral development in vivo Lab. Invest. 75 487–501

    Google Scholar 

  28. S Takeshita LP Zheng E Brogi et al. (1994) ArticleTitleTherapeutic angiogenesis: a single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model J. Clin. Invest. 93 662–670

    Google Scholar 

  29. S Takeshita L Weir D Chen et al. (1996) ArticleTitleTherapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia Biochem. Biophys. Res. Commun. 227 628–635

    Google Scholar 

  30. A Rivard M Silver D Chen et al. (1999) ArticleTitleRescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF Am. J. Pathol. 154 355–363

    Google Scholar 

  31. T Couffinhal M Silver M Kearney et al. (1999) ArticleTitleImpaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE−/− mice Circulation 99 3188–3198

    Google Scholar 

  32. I Baumgartner A Pieczek O Manor et al. (1998) ArticleTitleConstitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia Circulation 97 1114–1123 Occurrence Handle1:CAS:528:DyaK1cXisVWmsrk%3D Occurrence Handle9537336

    CAS  PubMed  Google Scholar 

  33. KG Shyu H Chang BW Wang et al. (2003) ArticleTitleIntramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia Am. J. Med. 114 85–92 Occurrence Handle10.1016/S0002-9343(02)01392-X

    Article  Google Scholar 

  34. N Ohara H Koyama T Miyata et al. (2001) ArticleTitleAdenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia Gene Ther. 8 837–845 Occurrence Handle10.1038/sj.gt.3301475

    Article  Google Scholar 

  35. EG Nabel D Gordon ZY Yang et al. (1992) ArticleTitleGene transfer in vivo with DNA-liposome complexes: lack of autoimmunity and gonadal localization Hum. Gene Ther. 3 649–656

    Google Scholar 

  36. JM Isner PR Vale JF Symes et al. (2001) ArticleTitleAssessment of risks associated with cardiovascular gene therapy in human subjects Circ. Res. 89 389–400

    Google Scholar 

  37. CL Grines MW Watkins G Helmer et al. (2002) ArticleTitleAngiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris Circulation 105 1291–1297 Occurrence Handle10.1161/hc1102.105595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Barandon MD.

About this article

Cite this article

Barandon, L., Leroux, L., Dufourcq, P. et al. Gene Therapy for Chronic Peripheral Arterial Disease: What Role for the Vascular Surgeon?. Ann Vasc Surg 18, 758–765 (2004). https://doi.org/10.1007/s10016-004-0115-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10016-004-0115-5

Keywords

Navigation