Abstract
In randomized clinical trials, we assumed the situation that the new treatment is not adequate compared to the control treatment as a result. However, it is unknown if the new treatment is ineffective for all patients or if it is effective for only a subgroup of patients with specific characteristics. If such a subgroup exists and can be detected, the patients can receive effective therapy. To detect subgroups, we need to estimate treatment effects. To achieve this, various treatment effect estimation methods have been proposed based on the sparse regression method. However, these methods are affected by noise. Therefore, we propose new treatment effect estimation approaches based on the modified covariate method, one using lasso regression and the other ridge regression, using the \(L_0\) norm. The proposed approach was evaluated through numerical simulation and real data examples. As a result, the results of the proposed method were almost the same as those of existing methods in numerical simulations, but were effective in real data example.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gail M, Simon R (1985) Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 41(2):361–72
Ryston O, Sauebrei W (2008) Interactions between treatment and continuous covariants: a step toward individualizing therapy. J Clin Oncol 26(9):1397–99
Lipkovich I, Dmitrienko A, D’Agistino RB (2017) Tutorial in biostatistics: Data-driven subgroup identification and analysis in clinical trials. Stat Med 36(1):136–196
Sies A, Demyttenaere K, Mechelen IV (2019) Studying treatment-effect heterogeneity in precision medicine through induced subgroups. J Biopharm Stat 29(3):491–507
Bonetti M, Gelber R (2004) Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics 5(3):465–481
Bonetti M, Zahrieh D, Cole BF, Gelber RD (2009) A small sample study of the STEPP approach to assessing treatment-covariate interactions in survival data. Stat Med 28(8):1255–68
Sauerbrei W, Royston P, Zapien K (2007) Detecting an interaction between treatment and a continuous covariate: a comparison of two approaches. Comput Stat Data Anal 51(8):40541–63
Su X, Tsai CL, Wang H, Nickerson DM, Li B (2009) Subgroup analysis via recursive partitioning. J Mach Learn Res 10:141–58
Zhao Y, Zeng D, Rush AJ, Kosorok MR (2012) Estimating individualized treatment rules using outcome weighted learning. J Am Stat Assoc 107(499):1106–1118
Imai K, Ratkovic M (2013) Estimating treatment effect heterogeneity in randomized program evaluation. Ann Appl Stat 7(1):443–470
Athey S, Imbens G (2016) Recursive partitioning for heterogeneous causal effects. Proc Natl Acad Sci USA 113(27):7353–7360
Wager S, Athey S (2018) Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc 113(523):1228–1242
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288
Tian L, Alizadeh AA, Gentles AJ, Tibshirani R (2014) A simple method for estimating interactions between a treatment and large number of covariates. J Am Stat Assoc 109(508):1517–1532
Xie Y, Brand JE, Jann B (2012) Estimating heterogeneous treatment effects with observational data. Sociol Methodol 42(1):314–347
Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55
Athey S, Tibshirani J, Wager S (2017) Solving heterogeneous estimating equations with gradient forest. https://arxiv.org/abs/1610.01271
Powers S, Qian J, Jung K, Schuler A, Shah NH, Hastie T, Tibshirani R (2017) Some methods for heterogeneous treatment effect estimation in high dimensions. Stat Med 37(11):1767–1787
Tibshirani R, Friedman J (2020) A Pliable Lasso. J Comput Graph Stat 29(1):215–225
Chen S, Tian L, Cai T, Yu M (2017) A general statistical framework for subgroup identification and comparative treatment scoring. Biometrics 73(4):1199–1209
Mazumder R, Radchenko P, Dedieu A (2022) Subset selection with shrinkage: sparse linear modeling when the SNR is low. Oper Res Online
Hazimeh H, Mazumder R (2020) Fast best subset selection: coordinate descent and local combinatorial optimization algorithms. Oper Res 68(5):1517–1537
R Core Team (2022) R: a language and environment for statistical computing. https://www.R-project.org/
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22
Hazimeh H, Mazumder R, Nonet T (2021) L0Learn: fast algorithms for best subset selection. R package version 2.0.3. https://CRAN.R-project.org/package= L0Learn
Juraska M, Gilbert PB, Lu X, Zhang M, Davidian M, Tsiatis AA (2022) speff2trial: semiparametric efficient estimation for a two-sample treatment effect. https://CRAN.R-project.org/package=speff2trial
Hammer SM et al (1996) A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. N Engl J Med 335:1081–1090
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was presented in part at the joint symposium of the 28th International Symposium on Artificial Life and Robotics, the 8th International Symposium on BioComplexity, and the 6th International Symposium on Swarm Behavior and Bio-Inspired Robotics (Beppu, Oita and Online, January 25–27, 2023).
About this article
Cite this article
Tanioka, K., Okuda, K., Hiwa, S. et al. Estimation of a treatment effect based on a modified covariates method with \(L_0\) norm. Artif Life Robotics 29, 250–258 (2024). https://doi.org/10.1007/s10015-023-00929-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10015-023-00929-0