Skip to main content

Microbial associates and social behavior in ants

Abstract

Current research in life sciences provides advances on how animal-associated microbes affect behavior and its underlying neurophysiology. However, studies in this field are often limited to individuals outside of their social context and neglect social dynamics. Contrarily, animals and humans develop and live in complex societies where they constantly adjust physiology and behavior to social interactions. To improve our understanding of how microbes and hosts interact and produce phenotypes at social and group levels, we need to broaden our experimental approaches to a group-level dimension. Here, we point out that eusocial insects, and ants in particular, are ideal models for this purpose. We first examine the most common types of microorganismal associations that ants engage in, and then briefly summarize what is known about the role of symbiotic microbes in ant social behavior. Finally, we propose future directions in the field, in the light of recent technical advances in behavior measuring techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Copyright © AntWeb 2002–2020. Licensing: Creative Commons Attribution License

Fig. 3

References

  1. 1.

    Bienenstock J, Kunze W, Forsythe P (2015) Microbiota and the gut-brain axis. Nutr Rev 73(Suppl 1):28–31. https://doi.org/10.1093/nutrit/nuv019

    Article  Google Scholar 

  2. 2.

    Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28:203–209

    Google Scholar 

  3. 3.

    Tognini P (2017) Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci 11:25. https://doi.org/10.3389/fncel.2017.00025

    Article  Google Scholar 

  4. 4.

    Mayer EA, Knight R, Mazmanian SK et al (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34:15490–15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014

    Article  Google Scholar 

  5. 5.

    Mändar R (2013) Microbiota of male genital tract: impact on the health of man and his partner. Pharmacol Res 69:32–41. https://doi.org/10.1016/j.phrs.2012.10.019

    Article  Google Scholar 

  6. 6.

    van de Wijgert JHHM, Borgdorff H, Verhelst R et al (2014) The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS ONE 9:e105998. https://doi.org/10.1371/journal.pone.0105998

    Article  Google Scholar 

  7. 7.

    Urbaniak C, Cummins J, Brackstone M et al (2014) Microbiota of human breast tissue. Appl Environ Microbiol 80:3007–3014. https://doi.org/10.1128/AEM.00242-14

    Article  Google Scholar 

  8. 8.

    Chen YE, Fischbach MA, Belkaid Y (2018) Skin microbiota–host interactions. Nature 553:427–436. https://doi.org/10.1038/nature25177

    Article  Google Scholar 

  9. 9.

    Linksvayer TA (2006) Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution 60:2552–2561. https://doi.org/10.1111/j.0014-3820.2006.tb01889.x

    Article  Google Scholar 

  10. 10.

    Teseo S, Châline N, Jaisson P, Kronauer DJC (2014) Epistasis between adults and larvae underlies caste fate and fitness in a clonal ant. Nat Commun 5:3363. https://doi.org/10.1038/ncomms4363

    Article  Google Scholar 

  11. 11.

    Wu M, Walser J-C, Sun L, Kölliker M (2020) The genetic mechanism of selfishness and altruism in parent-offspring coadaptation. Sci Adv 6:eaaw0070. https://doi.org/10.1126/sciadv.aaw0070

    Article  Google Scholar 

  12. 12.

    Mathuru AS, Libersat F, Vyas A, Teseo S (2020) Why behavioral neuroscience still needs diversity?: a curious case of a persistent need. Neurosci Biobehav Rev 116:130–141. https://doi.org/10.1016/j.neubiorev.2020.06.021

    Article  Google Scholar 

  13. 13.

    Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP et al (2017) Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15:e2000862. https://doi.org/10.1371/journal.pbio.2000862

    Article  Google Scholar 

  14. 14.

    Arbuthnott D, Levin TC, Promislow DEL (2016) The impacts of Wolbachia and the microbiome on mate choice in Drosophila melanogaster. J Evol Biol 29:461–468. https://doi.org/10.1111/jeb.12788

    Article  Google Scholar 

  15. 15.

    Morimoto J, Simpson JS, Ponton F (2017) Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster. Biol Let 13:20160966. https://doi.org/10.1098/rsbl.2016.0966

    Article  Google Scholar 

  16. 16.

    Ringo J, Sharon G, Segal D (2011) Bacteria-induced sexual isolation in Drosophila. Fly (Austin) 5:310–315. https://doi.org/10.4161/fly.5.4.15835

    Article  Google Scholar 

  17. 17.

    Sharon G, Segal D, Ringo JM et al (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056. https://doi.org/10.1073/pnas.1009906107

    Article  Google Scholar 

  18. 18.

    Lizé A, McKay R, Lewis Z (2014) Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME J 8:469–477. https://doi.org/10.1038/ismej.2013.157

    Article  Google Scholar 

  19. 19.

    Schretter CE, Vielmetter J, Bartos I et al (2018) A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 563:402–406. https://doi.org/10.1038/s41586-018-0634-9

    Article  Google Scholar 

  20. 20.

    Teseo S, Veerus L, Mery F (2016) Fighting experience affects fruit fly behavior in a mating context. Naturwissenschaften 103:38. https://doi.org/10.1007/s00114-016-1368-x

    Article  Google Scholar 

  21. 21.

    Kennedy EA, King KY, Baldridge MT (2018) Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front Physiol 9:1534. https://doi.org/10.3389/fphys.2018.01534

    Article  Google Scholar 

  22. 22.

    Cheung SG, Goldenthal AR, Uhlemann A-C et al (2019) Systematic review of gut microbiota and major depression. Front Psychiatry 10:34. https://doi.org/10.3389/fpsyt.2019.00034

    Article  Google Scholar 

  23. 23.

    Viney M (2018) The gut microbiota of wild rodents: Challenges and opportunities. Lab Anim 53(3):252–258. https://doi.org/10.1177/0023677218787538

    Article  Google Scholar 

  24. 24.

    Teseo S, Kronauer DJC, Jaisson P, Châline N (2013) Enforcement of reproductive synchrony via policing in a clonal ant. Curr Biol 23:328–332. https://doi.org/10.1016/j.cub.2013.01.011

    Article  Google Scholar 

  25. 25.

    Greenwald EE, Baltiansky L, Feinerman O (2018) Individual crop loads provide local control for collective food intake in ant colonies. eLife 7:e31730. https://doi.org/10.7554/eLife.31730

    Article  Google Scholar 

  26. 26.

    Sapountzis P, Zhukova M, Hansen LH et al (2015) Acromyrmex leaf-cutting ants have simple gut microbiota with nitrogen-fixing potential. Appl Environ Microbiol 81:5527–5537. https://doi.org/10.1128/AEM.00961-15

    Article  Google Scholar 

  27. 27.

    Chua K-O, Song S-L, Yong H-S et al (2018) Microbial community composition reveals spatial variation and distinctive core microbiome of the weaver ant Oecophylla smaragdina in Malaysia. Sci Rep 8:10777. https://doi.org/10.1038/s41598-018-29159-2

    Article  Google Scholar 

  28. 28.

    Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/annurev-ento-010814-020822

    Article  Google Scholar 

  29. 29.

    Sannino DR, Dobson AJ, Edwards K et al (2018) The Drosophila melanogaster gut microbiota provisions thiamine to its host. mBiol. https://doi.org/10.1128/mBio.00155-18

    Article  Google Scholar 

  30. 30.

    Sapountzis P, Zhukova M, Shik JZ et al (2018) Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. eLife 7:e39209. https://doi.org/10.7554/eLife.39209

    Article  Google Scholar 

  31. 31.

    Baumann P, Moran NA, Baumann L (2006) Bacteriocyte-associated endosymbionts of insects. In: Dworkin M, Falkow S, Rosenberg E, et al. (eds) The The prokaryotes: volume 1: symbiotic associations, biotechnology, applied. microbiology Springer New York, New York, pp 403–438

    Google Scholar 

  32. 32.

    Wernegreen JJ (2015) Endosymbiont evolution: predictions from theory and surprises from genomes. Ann NY Acad Sci 1360:16–35. https://doi.org/10.1111/nyas.12740

    Article  Google Scholar 

  33. 33.

    Reyes-Prieto M, Latorre A, Moya A (2014) Scanty microbes, the “symbionelle” concept. Environ Microbiol 16:335–338. https://doi.org/10.1111/1462-2920.12220

    Article  Google Scholar 

  34. 34.

    Wernegreen JJ (2012) Strategies of genomic integration within insect-bacterial mutualisms. Biol Bull 223:112–122

    Article  Google Scholar 

  35. 35.

    Sinotte VM, Renelies-Hamilton J, Taylor BA et al (2020) Synergies between division of labor and gut microbiomes of social insects. Front Ecol Evol 7:503

    Article  Google Scholar 

  36. 36.

    Johansson H, Dhaygude K, Lindström S et al (2013) A Metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta. PLoS ONE 8:e79777. https://doi.org/10.1371/journal.pone.0079777

    Article  Google Scholar 

  37. 37.

    Brown BP, Wernegreen JJ (2016) Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol 16:140. https://doi.org/10.1186/s12866-016-0721-8

    Article  Google Scholar 

  38. 38.

    Koto A, Nobu MK, Miyazaki R (2020) Deep sequencing uncovers caste-associated diversity of symbionts in the social ant Camponotus japonicus. mBiol 11:e00408-20. https://doi.org/10.1128/mBio.00408-20

    Article  Google Scholar 

  39. 39.

    Ramalho MO, Duplais C, Orivel J et al (2020) Development but not diet alters microbial communities in the Neotropical arboreal trap jaw ant Daceton armigerum: an exploratory study. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-64393-7

    Article  Google Scholar 

  40. 40.

    Hu Y, Sanders JG, Łukasik P et al (2018) Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun 9:1–14. https://doi.org/10.1038/s41467-018-03357-y

    Article  Google Scholar 

  41. 41.

    Clarke G, Stilling RM, Kennedy PJ et al (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238. https://doi.org/10.1210/me.2014-1108

    Article  Google Scholar 

  42. 42.

    Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. https://doi.org/10.1016/j.cell.2015.02.047

    Article  Google Scholar 

  43. 43.

    Mazzoli R, Pessione E (2016) The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 7:1934. https://doi.org/10.3389/fmicb.2016.01934

    Article  Google Scholar 

  44. 44.

    Ríos-Covián D, Ruas-Madiedo P, Margolles A et al (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185. https://doi.org/10.3389/fmicb.2016.00185

    Article  Google Scholar 

  45. 45.

    Byrne CS, Chambers ES, Alhabeeb H et al (2016) Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr 104:5–14. https://doi.org/10.3945/ajcn.115.126706

    Article  Google Scholar 

  46. 46.

    Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133. https://doi.org/10.1016/j.brainres.2018.03.015

    Article  Google Scholar 

  47. 47.

    de Bekker C, Ohm RA, Loreto RG et al (2015) Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genom 16:620. https://doi.org/10.1186/s12864-015-1812-x

    Article  Google Scholar 

  48. 48.

    Calcagnile M, Tredici SM, Talà A, Alifano P (2019) Bacterial semiochemicals and transkingdom interactions with insects and plants. Insects 10(12):441. https://doi.org/10.3390/insects10120441

    Article  Google Scholar 

  49. 49.

    Dosmann A, Bahet N, Gordon DM (2016) Experimental modulation of external microbiome affects nestmate recognition in harvester ants (Pogonomyrmex barbatus). PeerJ 4:e1566. https://doi.org/10.7717/peerj.1566

    Article  Google Scholar 

  50. 50.

    Silva-Junior EA, Ruzzini AC, Paludo CR et al (2018) Pyrazines from bacteria and ants: convergent chemistry within an ecological niche. Sci Rep 8:1–7. https://doi.org/10.1038/s41598-018-20953-6

    Article  Google Scholar 

  51. 51.

    Teseo S, van Zweden JS, Pontieri L et al (2019) The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim Behav 150:239–254. https://doi.org/10.1016/j.anbehav.2018.12.017

    Article  Google Scholar 

  52. 52.

    Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. https://doi.org/10.1146/annurev-ento-112408-085356

    Article  Google Scholar 

  53. 53.

    Russell JA, Moreau CS, Goldman-Huertas B et al (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. PNAS 106:21236–21241. https://doi.org/10.1073/pnas.0907926106

    Article  Google Scholar 

  54. 54.

    Klein A, Schrader L, Gil R et al (2016) A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J 10:376–388. https://doi.org/10.1038/ismej.2015.119

    Article  Google Scholar 

  55. 55.

    Williams LE, Wernegreen JJ (2015) Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini. PeerJ 3:e881. https://doi.org/10.7717/peerj.881

    Article  Google Scholar 

  56. 56.

    Stoll S, Feldhaar H, Gross R (2009) Transcriptional profiling of the endosymbiont Blochmannia floridanus during different developmental stages of its holometabolous ant host. Environ Microbiol 11:877–888. https://doi.org/10.1111/j.1462-2920.2008.01808.x

    Article  Google Scholar 

  57. 57.

    Fan Y, Thompson JW, Dubois LG et al (2013) Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes. J Proteome Res 12:704–718. https://doi.org/10.1021/pr3007842

    Article  Google Scholar 

  58. 58.

    Sinotte VM, Freedman SN, Ugelvig LV, Seid MA (2018) Camponotus floridanus ants incur a trade-off between phenotypic development and pathogen susceptibility from their mutualistic endosymbiont blochmannia. Insects 9:e58. https://doi.org/10.3390/insects9020058

    Article  Google Scholar 

  59. 59.

    van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons. Cambridge, pp 222–243

  60. 60.

    Abel B, Lukas S, Julia P et al (2018) Stress and early experience underlie dominance status and division of labour in a clonal insect. Proc R Soc B Biol Sci 285:20181468. https://doi.org/10.1098/rspb.2018.1468

    Article  Google Scholar 

  61. 61.

    Itoh H, Jang S, Takeshita K et al (2019) Host–symbiont specificity determined by microbe–microbe competition in an insect gut. PNAS 116:22673–22682. https://doi.org/10.1073/pnas.1912397116

    Article  Google Scholar 

  62. 62.

    Chatzispyrou IA, Held NM, Mouchiroud L et al (2015) Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Res 75:4446–4449. https://doi.org/10.1158/0008-5472.CAN-15-1626

    Article  Google Scholar 

  63. 63.

    Moullan N, Mouchiroud L, Wang X et al (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep 10(10):1681–1691. https://doi.org/10.1016/j.celrep.2015.02.034

    Article  Google Scholar 

  64. 64.

    Poulsen M, Bot ANM, Boomsma JJ (2003) The effect of metapleural gland secretion on the growth of a mutualistic bacterium on the cuticle of leaf-cutting ants. Naturwissenschaften 90:406–409. https://doi.org/10.1007/s00114-003-0450-3

    Article  Google Scholar 

  65. 65.

    Consuegra J, Grenier T, Baa-Puyoulet P et al (2020) Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth. PLoS Biol 18:e3000681. https://doi.org/10.1371/journal.pbio.3000681

    Article  Google Scholar 

  66. 66.

    Csata E, Gautrais J, Bach A et al (2020) Ant foragers compensate for the nutritional deficiencies in the colony. Curr Biol 30:135–142.e4. https://doi.org/10.1016/j.cub.2019.11.019

    Article  Google Scholar 

  67. 67.

    Feldhaar H, Straka J, Krischke M et al (2007) Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5:48. https://doi.org/10.1186/1741-7007-5-48

    Article  Google Scholar 

  68. 68.

    Noldus LPJJ, Spink AJ, Tegelenbosch RAJ (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput 33:398–414. https://doi.org/10.3758/BF03195394

    Article  Google Scholar 

  69. 69.

    Buresová O, Bolhuis JJ, Bures J (1986) Differential effects of cholinergic blockade on performance of rats in the water tank navigation task and in a radial water maze. Behav Neurosci 100:476–482. https://doi.org/10.1037//0735-7044.100.4.476

    Article  Google Scholar 

  70. 70.

    Spruijt B, Pitsikas N, Algeri S, Gispen WH (1990) Org2766 improves performance of rats with unilateral lesions in the fimbria fornix in a spatial learning task. Brain Res 527:192–197. https://doi.org/10.1016/0006-8993(90)91137-6

    Article  Google Scholar 

  71. 71.

    Martin BR, Prescott WR, Zhu M (1992) Quantitation of rodent catalepsy by a computer-imaging technique. Pharmacol Biochem Behav 43:381–386. https://doi.org/10.1016/0091-3057(92)90166-D

    Article  Google Scholar 

  72. 72.

    Spruijt BM, Gispen WH (1983) Prolonged animal observation by use of digitized video displays. Pharmacol Biochem Behav 19:765–769

    Article  Google Scholar 

  73. 73.

    Olivo RF, Thompson MC (1988) Monitoring animals’ movements using digitized video images. Behav Res Methods Instrum Comput 20:485–490. https://doi.org/10.3758/BF03202701

    Article  Google Scholar 

  74. 74.

    Noldus L, Spink AJ, Tegelenbosch RAJ (2002) Computerised video tracking, movement analysis and behaviour recognition in insects. Comput Electron Agric 35:201–227. https://doi.org/10.1016/S0168-1699(02)00019-4

    Article  Google Scholar 

  75. 75.

    Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093. https://doi.org/10.1126/science.1234316

    Article  Google Scholar 

  76. 76.

    Heyman Y, Shental N, Brandis A et al (2017) Ants regulate colony spatial organization using multiple chemical road-signs. Nat Commun 8:ncomms15414. https://doi.org/10.1038/ncomms15414

    Article  Google Scholar 

  77. 77.

    Greenwald E, Eckmann J-P, Feinerman O (2019) Colony entropy—Allocation of goods in ant colonies. PLoS Comput Biol 15:e1006925. https://doi.org/10.1371/journal.pcbi.1006925

    Article  Google Scholar 

  78. 78.

    Quque M, Bles O, Bénard A et al (2020) Hierarchical networks of food exchange in the black garden ant Lasius niger. Insect Sci. https://doi.org/10.1111/1744-7917.12792

    Article  Google Scholar 

  79. 79.

    Ulrich Y, Burns D, Libbrecht R, Kronauer DJC (2015) Ant larvae regulate worker foraging behavior and ovarian activity in a dose-dependent manner. Behav Ecol Sociobiol 70:1011–1018. https://doi.org/10.1007/s00265-015-2046-2

    Article  Google Scholar 

  80. 80.

    Ulrich Y, Saragosti J, Tokita CK et al (2018) Fitness benefits and emergent division of labour at the onset of group living. Nature 560:635. https://doi.org/10.1038/s41586-018-0422-6

    Article  Google Scholar 

  81. 81.

    Ulrich Y, Kawakatsu M, Tokita CK et al (2020) Emergent behavioral organization in heterogeneous groups of a social insect. bioRxiv. https://doi.org/10.1101/2020.03.05.963207

    Article  Google Scholar 

  82. 82.

    Gal A, Saragosti J, Kronauer DJC (2020) anTraX: high throughput video tracking of color-tagged insects. bioRxiv. https://doi.org/10.1101/2020.04.29.068478

    Article  Google Scholar 

  83. 83.

    Kabra M, Robie AA, Rivera-Alba M et al (2013) JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods 10:64–67. https://doi.org/10.1038/nmeth.2281

    Article  Google Scholar 

  84. 84.

    Mathis A, Mamidanna P, Cury KM et al (2018) DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21:1281–1289. https://doi.org/10.1038/s41593-018-0209-y

    Article  Google Scholar 

  85. 85.

    Gernat T, Rao VD, Middendorf M et al (2018) Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks. PNAS 115:1433–1438. https://doi.org/10.1073/pnas.1713568115

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Presidential Postdoctoral Fellowship (M408080000) from Nanyang Technological University (NTU) to ST.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serafino Teseo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sclocco, A., Teseo, S. Microbial associates and social behavior in ants. Artif Life Robotics 25, 552–560 (2020). https://doi.org/10.1007/s10015-020-00645-z

Download citation

Keywords

  • Social evolution
  • Commensal microbes
  • Primary endosymbionts
  • Ants
  • Group-level behavior