Skip to main content
Log in

Teleoperation of robot arm with position measurement via angle-pixel characteristic and visual supporting function

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

In this paper, a teleoperation system of a robot arm with position measurement function and visual supporting function is developed. The working robot arm is remotely controlled by the manual operation of the human operator and the autonomous control via visual servo. The visual servo employs the template matching technique. The position measurement is realized using a stereo camera based on the angle-pixel characteristic. The visual supporting function to give the human operator useful information about the teleoperation is also provided. The usefulness of the proposed teleoperation system is confirmed through experiments using an industrial articulated robot arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sheridan T (1995) Teleoperation, telerobotics and telepresence: a progress report. Control Eng Pract 3(2):204–214

    Article  Google Scholar 

  2. Goto S (2010) Teleoperation system of industrial articulated robot arms by using forcefree control. In: Jimenez A, Hadithi B (eds) Robot manipulators trends and development. Intech, pp 321–334

  3. Hernansanz A, Casals A, Amat J (2015) A multi-robot cooperation strategy for dexterous task oriented teleoperation. Robot Auton Syst 68:156–172

    Article  Google Scholar 

  4. Álvarez B, Iborra A, Alonso A, de la Puente JA (2001) Reference architecture for robot teleoperation: development details and practical use. Control Eng Pract 9(4):395–402

    Article  Google Scholar 

  5. Passenberg C, Peer A, Buss M (2010) A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20(7):802–811

    Article  Google Scholar 

  6. Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057

    Article  MathSciNet  MATH  Google Scholar 

  7. Hutchinson S, Hager GD, Corke PI (1996) A tutorial on visual servo control. IEEE Trans Robot Autom 12(5):651–670

    Article  Google Scholar 

  8. Chaumette F, Hutchinson S (2006) Visual servo control, part I: basic approaches. IEEE Robot Autom Mag 13(4):82–90

    Article  Google Scholar 

  9. Chaumette F, Hutchinson S (2007) Visual servo control, part II: advanced approaches. IEEE Robot Autom Mag 14(1):109–118

    Article  Google Scholar 

  10. Liang X, Wang H, Liu YH, Chen W, Zhao J (2015) A unified design method for adaptive visual tracking control of robots with eye-in-hand/fixed camera configuration. Automatica 59:97–105

    Article  MathSciNet  MATH  Google Scholar 

  11. Andaluz VH, Roberi F, Salinas L, Toibero JM (2015) Passivity-based visual feedback control with dynamic compensation of mobile manipulators: stability and \(L_2\)-gain performance analysis. Robot Auton Syst 66:64–74

    Article  Google Scholar 

  12. Bishop B, Hutchinson S, Spong M (1996) Camera modelling for visual servo control applications. Math Comput Model 24(5–6):79–102

    Article  Google Scholar 

  13. Kawabata A, Fujita M (1998) Design of \(H_{\infty }\) filter-based robust visual servoing system. Control Eng Pract 6(2):219–225

    Article  Google Scholar 

  14. Pallegedara A, Matsuda Y, Matsumoto T, Tsukamoto K, Egashira N, Goto S (2012) Teleoperation of robot arms using force-free control and template matching. Int J Innov Comput Inf Control 8(10A):6869–6884

    Google Scholar 

  15. Pallegedara A, Matsuda Y, Egashira N, Sugi T, Goto S (2013) Experimental evaluation of teleoperation system with force-free control and visual servo control by human operator perception. Artif Life Robot 17(3–4):388–394

    Article  Google Scholar 

  16. Matsuda Y, Tsukamoto K, Matsumoto T, Goto S, Sugi T, Egashira N (2014) Remote operation system of robot arm with visual servo mechanism by target selection. Int J Innov Comput Inf Control 10(4):1381–1390

    Google Scholar 

  17. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the Open CV library. O’Reilly Media, CA

    Google Scholar 

  18. Nakamura M, Goto S, Kyura N (2004) Mechatronic servo system control—problems in industries and their theoretical solutions. Springer, New York (translated by Zhang T)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Matsuda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, Y., Sugi, T., Goto, S. et al. Teleoperation of robot arm with position measurement via angle-pixel characteristic and visual supporting function. Artif Life Robotics 21, 478–485 (2016). https://doi.org/10.1007/s10015-016-0289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-016-0289-2

Keywords

Navigation