Artificial Life and Robotics

, Volume 19, Issue 3, pp 220–226 | Cite as

Adaptive LSH based on the particle swarm method with the attractor selection model for fast approximation of Gaussian process regression

  • Yuya Okadome
  • Kenji Urai
  • Yutaka Nakamura
  • Tetsuya Yomo
  • Hiroshi Ishiguro
Original Article


Gaussian process regression (GPR) is one of the non-parametric methods and has been studied in many fields to construct a prediction model for highly non-linear system. It has been difficult to apply it to a real-time task due to its high computational cost but recent high-performance computers and computationally efficient algorithms make it possible. In our previous work, we derived a fast approximation method for GPR using a locality-sensitive hashing (LSH) and product of experts model, but its performance depends on the parameters of the hash functions used in LSH. Hash functions are usually determined randomly. In this research, we propose an optimization method for the parameters of hash functions by referring to a swarm optimization method. The experimental results show that accurate force estimation of an actual robotic arm is achieved with high computational efficiency.


Gaussian process regression Locality-sensitive hashing Particle swarm optimization 



This research was supported in part by “Program for Leading Graduate Schools” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, CambridgezbMATHGoogle Scholar
  2. 2.
    Snelson E, Ghahramani Z (2005) Sparse gaussian processes using pseudo-inputs. In: Advances in neural information processing systems 18. MIT press, pp 1257–1264Google Scholar
  3. 3.
    Quinonero-Candela J, Rasmussen CE (2005) A unifying view of sparse approximate Gaussian process regression. J Mach Learn Res 6:1939–1959zbMATHMathSciNetGoogle Scholar
  4. 4.
    Nguyen-tuong D, Peters J (2008) Local gaussian process regression for real time online model learning and control. Adv Neural Inf Process Syst 22:2008Google Scholar
  5. 5.
    Ko J, Fox D (2009) GP-bayesfilters: Bayesian filtering using gaussian process prediction and observation models. Auton Robots 27:75–90CrossRefGoogle Scholar
  6. 6.
    Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp 604–613Google Scholar
  7. 7.
    Okadome Y, Nakamura Y, Shikauchi Y, et al. (2013) Fast approximation method for Gaussian process regression using hash function for non-uniformly distributed data. In: Artificial Neural Networks and Machine Learning, pp 17–25Google Scholar
  8. 8.
    Achlioptas D, Database-friendly random projections (2001) In: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp 274–281Google Scholar
  9. 9.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE international conference on neural networks, pp 1942–1948Google Scholar
  10. 10.
    Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57CrossRefGoogle Scholar
  11. 11.
    Kashiwagi A, Urabe I, Kaneko K et al. (2006) Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS One 1(1):e49, 12Google Scholar
  12. 12.
    Yanagida T, Ueda M, Murata T et al (2007) Brownian motion, fluctuation and life. Biosystems 88(3):228–242CrossRefGoogle Scholar
  13. 13.
    Fukuyori I, Nakamura Y, Matsumoto Y et al (2008) Flexible control mechanism for multi-dof robotic arm based on biological fluctuation. In: From animals to animats 10, Lecture Notes in Computer Science, vol 5040, pp 22–31Google Scholar

Copyright information

© ISAROB 2014

Authors and Affiliations

  • Yuya Okadome
    • 1
  • Kenji Urai
    • 1
  • Yutaka Nakamura
    • 1
  • Tetsuya Yomo
    • 2
  • Hiroshi Ishiguro
    • 1
  1. 1.Department of Systems Innovation, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Bioinformatic Engineering, Graduate School of Information Science and TechnologyOsaka University SuitaJapan

Personalised recommendations