Brain Tumor Pathology

, Volume 35, Issue 3, pp 131–140 | Cite as

Importance and accuracy of intraoperative frozen section diagnosis of the resection margin for effective carmustine wafer implantation

  • Kenichiro Asano
  • Akira Kurose
  • Akihisa Kamataki
  • Noriko Kato
  • Kaoru Ogawa
  • Kosuke Katayama
  • Kiyohide Kakuta
  • Toshio Fumoto
  • Hiroki Ohkuma
Original Article


For effective implantation of carmustine (BCNU) wafers, it is important to determine the order of priority with reference to the intraoperative frozen section diagnosis of the resection margin (IOFM). The accuracy of IOFM and patterns of tumor recurrence with implantation of BCNU wafers were studied retrospectively. Forty-six cases of newly diagnosed malignant glioma were evaluated. Tumors were resected after intraoperative frozen section diagnosis (IOFD). IOFM was performed for resection walls and evaluated on a three-level scale (−, no tumor invasion; 1+, minor cell invasion; 2+, evident cell invasion). The results were used for effective BCNU wafer implantation. The IOFM sections were then thawed, frozen-paraffin marginal (FPM) sections were prepared, and IOFM was evaluated with FPM sections. The accuracy of IOFD grading was compared to that of the formalin fixed paraffin-embedded section and was 76.1%. The accuracy of IOFM was compared with the FPM section in 148 specimens from 42 patients. The IOFM accuracy was 80.4%. BCNU wafers were implanted in 25 patients and there was recurrence in 15. Local recurrence was seen in 40% (6 patients). However, there was no recurrence immediately below the BCNU wafers. With properly performed IOFM, BCNU wafers can be efficiently implanted, and local recurrence immediately below the BCNU wafers can be inhibited.


Intraoperative frozen section diagnosis of the resection margin Accuracy Malignant gliomas Carmustine wafer Local recurrence 





Intraoperative frozen section diagnosis


Intraoperative frozen section diagnosis of the resection margin


Isocitrate dehydrogenase


5-Aminolevulinic acid







FPM section

Frozen-paraffin marginal section

FFPE section

Formalin fixed paraffin-embedded section


  1. 1.
    Westphal M, Hilt DC, Bortey E et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 5(2):79–88CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820CrossRefPubMedGoogle Scholar
  3. 3.
    Burger PC, Heinz ER, Shibata T, Kleihues P (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68(5):698–704CrossRefPubMedGoogle Scholar
  4. 4.
    Wilson CB (1992) Glioblastoma: the past, the present, and the future. Clin Neurosurg 38:32–48PubMedGoogle Scholar
  5. 5.
    Asano K, Duntsch CD, Zhou Q et al (2004) Correlation of N-cadherin expression in high grade gliomas with tissue invasion. J Neurooncol 70(1):3–15CrossRefPubMedGoogle Scholar
  6. 6.
    Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52(4):371–379CrossRefPubMedGoogle Scholar
  7. 7.
    Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198CrossRefPubMedGoogle Scholar
  8. 8.
    De Bonis P, Anile C, Pompucci A et al (2013) The influence of surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg 115(1):37–43CrossRefPubMedGoogle Scholar
  9. 9.
    Shimizu H, Mori O, Ohaki Y et al (2005) Cytological interface of diffusely infiltrating astrocytoma and its marginal tissue. Brain Tumor Pathol 22(2):59–74CrossRefPubMedGoogle Scholar
  10. 10.
    Chand P, Amit S, Gupta R, Agarwal A (2016) Errors, limitations, and pitfalls in the diagnosis of central and peripheral nervous system lesions in intraoperative cytology and frozen sections. J Cytol 33(2):93–97CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ishikawa E, Yamamoto T, Satomi K et al (2014) Intraoperative pathological diagnosis in 205 glioma patients in the pre-BCNU wafer era: retrospective analysis with intraoperative implantation of BCNU wafers in mind. Brain Tumor Pathol 31(3):156–161CrossRefPubMedGoogle Scholar
  12. 12.
    Uematsu Y, Owai Y, Okita R, Tanaka Y, Itakura T (2007) The usefulness and problem of intraoperative rapid diagnosis in surgical neuropathology. Brain Tumor Pathol 24(2):47–52CrossRefPubMedGoogle Scholar
  13. 13.
    Plesec TP, Prayson RA (2007) Frozen section discrepancy in the evaluation of central nervous system tumors. Arch Pathol Lab Med 131(10):1532–1540PubMedGoogle Scholar
  14. 14.
    Barreto SG, Pandanaboyana S, Ironside N, Windsor JA (2017) Does revision of resection margins based on frozen section improve overall survival following pancreatoduodenectomy for pancreatic ductal adenocarcinoma? A meta-analysis. HPB (Oxford) 19(7):573–579CrossRefGoogle Scholar
  15. 15.
    Gillitzer R, Thüroff C, Fandel T et al (2011) Intraoperative peripheral frozen sections do not significantly affect prognosis after nerve-sparing radical prostatectomy for prostate cancer. BJU Int 107(5):755–759CrossRefPubMedGoogle Scholar
  16. 16.
    Nunez AL, Giannico GA, Mukhtar F et al (2016) Frozen section evaluation of margins in radical prostatectomy specimens: a contemporary study and literature review. Ann Diagn Pathol 24:11–18CrossRefPubMedGoogle Scholar
  17. 17.
    Mair M, Nair D, Nair S et al (2017) Intraoperative gross examination vs frozen section for achievement of adequate margin in oral cancer surgery. Oral Surg Oral Med Oral Pathol Oral Radiol 123(5):544–549CrossRefPubMedGoogle Scholar
  18. 18.
    Szewczyk M, Golusinski W, Pazdrowski J et al (2017) Positive fresh frozen section margins as an adverse independent prognostic factor for local recurrence in oral cancer patients. Laryngoscope. (Epub ahead of print) PubMedCrossRefGoogle Scholar
  19. 19.
    Klimberg VS, Harms S, Korourian S (1999) Assessing margin status. Surg Oncol 8(2):77–84CrossRefPubMedGoogle Scholar
  20. 20.
    Fukamachi K, Ishida T, Usami S (2010) Total-circumference intraoperative frozen section analysis reduces margin-positive rate in breast-conservation surgery. Jpn J Clin Oncol 40(6):513–520CrossRefPubMedGoogle Scholar
  21. 21.
    Ko S, Chun YK, Kang SS, Hur MH (2017) The usefulness of intraoperative circumferential frozen-section analysis of lumpectomy margins in breast-conserving surgery. J Breast Cancer 20(2):176–182CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefPubMedGoogle Scholar
  23. 23.
    Gutenberg A, Lumenta CB, Braunsdorf WE (2013) The combination of carmustine wafers and temozolomide for the treatment of malignant gliomas. A comprehensive review of the rationale and clinical experience. J Neurooncol 113(2):163–174CrossRefPubMedGoogle Scholar
  24. 24.
    Chowdhary SA, Ryken T, Newton HB (2015) Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol 122(2):367–382CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30(9):907–911CrossRefPubMedGoogle Scholar
  26. 26.
    Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16(6):1405–1409CrossRefPubMedGoogle Scholar
  27. 27.
    Giese A, Kucinski T, Knopp U (2004) Pattern of recurrence following local chemotherapy with biodegradable carmustine (BCNU) implants in patients with glioblastoma. J Neurooncol 66(3):351–360CrossRefPubMedGoogle Scholar
  28. 28.
    Milano MT, Okunieff P, Donatello RS (2010) Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys 78(4):1147–1155CrossRefPubMedGoogle Scholar
  29. 29.
    McDonald MW, Shu HK, Curran WJ Jr, Crocker IR (2011) Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys 79(1):130–136CrossRefPubMedGoogle Scholar
  30. 30.
    Petrecca K, Guiot MC, Panet-Raymond V, Souhami L (2013) Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J Neurooncol 111(1):19–23CrossRefPubMedGoogle Scholar
  31. 31.
    Shields LB, Kadner R, Vitaz TW, Spalding AC (2013) Concurrent bevacizumab and temozolomide alter the patterns of failure in radiation treatment of glioblastoma multiforme. Radiat Oncol:101. CrossRefGoogle Scholar
  32. 32.
    Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10):779–787CrossRefPubMedGoogle Scholar
  33. 33.
    Chamberlain MC (2011) Radiographic patterns of relapse in glioblastoma. J Neurooncol 101(2):319–323CrossRefPubMedGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryHirosaki University Graduate School of MedicineHirosakiJapan
  2. 2.Department of Anatomic PathologyHirosaki University Graduate School of MedicineHirosakiJapan

Personalised recommendations