Skip to main content

Advertisement

Log in

Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) is an attractive target of antiangiogenic therapy in glioblastomas. Bevacizumab (Bev), a humanized anti-VEGF antibody, is associated with the improvement of progression-free survival and performance status in patients with glioblastoma. However, randomized trials uniformly suggest that these favorable clinical effects of Bev do not translate into an overall survival benefit. The mechanisms of action of Bev appear to include the inhibition of tumor angiogenesis, as well as indirect effects such as the depletion of niches for glioma stem cells and stimulation of antitumor immunity. Although several molecules/pathways have been reported to mediate adaptation and resistance to Bev, including the activation of alternative pro-angiogenic pathways, the resistance mechanisms have not been fully elucidated; for example, the mechanism that reinduces tumor hypoxia remains unclarified. The identification of imaging characteristics or biomarkers predicting the response to Bev, as well as the better understanding of the mechanisms of action and resistance, is crucial to improve the overall clinical outcome and optimize individual therapy. In this article, the authors review the results of important clinical trials/studies, the current understanding of the mechanisms of action and resistance, and the knowledge of imaging characteristics and biomarkers predicting the response to Bev.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt NO, Westphal M, Hagel C, Ergün S, Stavrou D, Rosen EM, Lamszus K (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84:10–18

    Article  CAS  PubMed  Google Scholar 

  3. Chaudhry IH, O’Donovan DG, Brenchley PE, Reid H, Roberts IS (2001) Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 39:409–415

    Article  CAS  PubMed  Google Scholar 

  4. Gatson NN, Chiocca EA, Kaur B (2012) Anti-angiogenic gene therapy in the treatment of malignant gliomas. Neurosci Lett 527:62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Wagner M, Bailey L, Bigner DD, Friedman AH, Friedman HS (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    Article  CAS  PubMed  Google Scholar 

  6. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740

    Article  CAS  PubMed  Google Scholar 

  7. Nagane M, Nishikawa R, Narita Y, Kobayashi H, Takano S, Shinoura N, Aoki T, Sugiyama K, Kuratsu J, Muragaki Y, Sawamura Y, Matsutani M (2012) Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol 42:887–895

    Article  PubMed  PubMed Central  Google Scholar 

  8. Taal W, Oosterkamp HM, Walenkamp AM, Dubbink HJ, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, Boerman D, de Vos FY, Dinjens WN, Enting RH, Taphoorn MJ, van den Berkmortel FW, Jansen RL, Brandsma D, Bromberg JE, van Heuvel I, Vernhout RM, van der Holt B, van den Bent MJ (2014) Single agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 15:943–953

    Article  CAS  PubMed  Google Scholar 

  9. Wick W, Brandes AA, Gorlia T, Bendszus M, Sahm F, Taal W, Taphoom M, Domont J, Idbaih A, Campone M, Clement P, Stupp R, Fabbro M, Rhun E, Dubois F, Klein M, Platten M, weller M, Golfinopoulos V, Bent M (2016) EORTC 26101 phase III trial exploring the combination of bevacizumab and lomustine in patients with first progression of a glioblastoma. J Clin Oncol 34 (suppl; abstr 2001)

  10. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  11. Chinot OL, Nishikawa R, Mason W, Henriksson R, Saran F, Cloughesy T, Garcia J, Revil C, Abrey L, Wick W (2016) Upfront bevacizumab may extend survival for glioblastoma patients who do not receive second-line therapy: an exploratory analysis of AVAglio. Neurooncology 18:1313–1318

    Google Scholar 

  12. Herrlinger U, Schäfer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, Friedrich F, Rohde V, Ringel F, Schlegel U, Sabel M, Ronellenfitsch MW, Uhl M, Maciaczyk J, Grau S, Schnell O, Hänel M, Krex D, Vajkoczy P, Gerlach R, Kortmann RD, Mehdorn M, Tüttenberg J, Mayer-Steinacker R, Fietkau R, Brehmer S, Mack F, Stuplich M, Kebir S, Kohnen R, Dunkl E, Leutgeb B, Proescholdt M, Pietsch T, Urbach H, Belka C, Stummer W, Glas M (2016) Bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine-DNA methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol 34:1611–1619

    Article  CAS  PubMed  Google Scholar 

  13. Grothey A, Sugrue MM, Purdie DM, Dong W, Sargent D, Hedrick E, Kozloff M (2008) Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: results from a large observational cohort study (BRiTE). J Clin Oncol 26:5326–5334

    Article  CAS  PubMed  Google Scholar 

  14. Reardon DA, Herndon JE, Peters KB, Desjardins A, Coan A, Lou E, Sumrall AL, Turner S, Lipp ES, Sathornsumetee S, Rich JN, Sampson JH, Friedman AH, Boulton ST, Bigner DD, Friedman HS, Vredenburgh JJ (2012) Bevacizumab continuation beyond initial bevacizumab progression among recurrent glioblastoma patients. Br J Cancer 107:1481–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326

    Article  CAS  PubMed  Google Scholar 

  16. Miyatake S, Furuse M, Kawabata S, Maruyama T, Kumabe T, Kuroiwa T, Ono K (2013) Bevacizumab treatment of symptomatic pseudoprogression after boron neutron capture therapy for recurrent malignant gliomas. Report of 2 cases. Neurooncology 15:650–655

    Google Scholar 

  17. Flieger M, Ganswindt U, Schwarz SB, Kreth FW, Tonn JC, La Fougère C, Ertl L, Linn J, Herrlinger U, Belka C, Niyazi M (2014) Re-irradiation and bevacizumab in recurrent high-grade glioma: an effective treatment option. J Neurooncol 117:337–345

    Article  CAS  PubMed  Google Scholar 

  18. Schnell O, Thorsteinsdottir J, Fleischmann DF, Lenski M, Abenhardt W, Giese A, Tonn JC, Belka C, Kreth FW, Niyazi M (2016) Re-irradiation strategies in combination with bevacizumab for recurrent malignant glioma. J Neurooncol 130:591–599

    Article  CAS  PubMed  Google Scholar 

  19. Wick W, Weller M, van den Bent M, Stupp R (2010) Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol 28:e188–e189

    Article  PubMed  Google Scholar 

  20. Levin VA, Mendelssohn ND, Chan J, Stovall MC, Peak SJ, Yee JL, Hui RL, Chen DM (2015) Impact of bevacizumab administered dose on overall survival of patients with progressive glioblastoma. J Neurooncol 122:145–150

    Article  CAS  PubMed  Google Scholar 

  21. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for new diagnosed glioblastoma. N Engl J Med 370:709–722

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson DR, Leeper HE, Uhm JH (2013) Glioblastoma survival in the United States improved after Food and Drug Administration approval of bevacizumab: a population-based analysis. Cancer 119:3489–3495

    Article  CAS  PubMed  Google Scholar 

  24. Castro BA, Aghi MK (2014) Bevacizumab for glioblastoma: current indications, surgical implications, and future directions. Neurosurg Focus 37:E9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, Barnett GH, Zhu JJ, Henson JW, Engelhard HH, Chen TC, Tran DD, Sroubek J, Tran ND, Hottinger AF, Landolfi J, Desai R, Caroli M, Kew Y, Honnorat J, Idbaih A, Kirson ED, Weinberg U, Palti Y, Hegi ME, Ram Z (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314:2535–2543

    Article  CAS  PubMed  Google Scholar 

  26. Brat DJ, Van Meir EG (2001) Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. Am J Pathol 158:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  28. Takano S, Ishikawa E, Nakai K, Matsuda M, Masumoto T, Yamamoto T, Matsumura A (2014) Bevacizumab in Japanese patients with malignant glioma: from basic research to clinical trial. OncoTargets Ther 7:1551–1562

    Article  CAS  Google Scholar 

  29. Fischer I, Cunliffe CH, Bollo RJ, Raza S, Monoky D, Chiriboga L, Parker EC, Golfinos JG, Kelly PJ, Knopp EA, Gruber ML, Zagzag D, Narayana A (2008) High-grade glioma before and after treatment with radiation and Avastin: initial observation. Neurooncology 10:700–708

    Google Scholar 

  30. DeLay M, Jahangiri A, Carbonell W, Hu YL, Tsao S, Tom MW, Paquette J, Tokuyasu TA, Aqhi MK (2012) Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy. Clin Cancer Res 18:2930–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okamoto S, Nitta M, Maruyama T, Sawada T, Komori T, Okada Y, Muragaki Y (2016) Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol 33:129–136

    Article  CAS  PubMed  Google Scholar 

  32. Tamura R, Tanaka T, Miyake K, Tabei Y, Ohara K, Sampetrean O, Kono M, Mizutani K, Yamamoto Y, Murayama Y, Tamiya T, Yoshida K, Sasaki H (2016) Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget 7:52423–52435

    PubMed  PubMed Central  Google Scholar 

  33. Myers AL, Williams RF, Ng CY, Hartwich JE, Davidoff AM (2010) Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation. J Pediatr Surg 45:1080–1085

    Article  PubMed  PubMed Central  Google Scholar 

  34. Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M, Ancukiewicz M, Polaskova P, Pinho MC, Jennings D, Plotkin SR, Chi AS, Eichler AF, Dietrich J, Hochberg FH, Lu-Emerson C, Iafrate AJ, Ivy SP, Rosen BR, Loeffler JS, Wen PY, Sorensen AG, Jain RK (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110:19059–19064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  37. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gilbertson RJ, Rich JN (2007) Making a tumourʼs bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  CAS  PubMed  Google Scholar 

  39. Bautch VL (2010) Cancer: tumour stem cells switch sides. Nature 468:770–771

    Article  CAS  PubMed  Google Scholar 

  40. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:6982

    Article  CAS  Google Scholar 

  41. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

  42. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  CAS  PubMed  Google Scholar 

  43. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–1321

    Article  CAS  PubMed  Google Scholar 

  44. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by hunan tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    Article  CAS  PubMed  Google Scholar 

  45. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T cell proliferation in colorectal cancer. Clin Cancer Res 73:539–549

    CAS  Google Scholar 

  46. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita H, Tartour E, Taieb J, Terme M (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 32:139–148

    Article  CAS  Google Scholar 

  47. Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, Denker M, Leveque V, Cañamero M, Babitski G, Koeppen H, Ziai J, Sharma N, Gaire F, Chen DS, Waterkamp D, Hegde PS, McDermott DF (2016) Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun 7:12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rexer H, Doehn C (2016) First-line treatment for advanced renal cell carcinoma: a phase 3, open-label, randomized study of Atezolizumab (Anti-PD-L1-Antibody) in combination with Bevacizumab versus Sunitinib in patients with untreated advanced renal cell carcinoma (“IMmotion”) - AN 37/15 der AUO. Urologe A 55:1242–1243

    Article  CAS  PubMed  Google Scholar 

  49. Reardon D, Schuster J, Tran D, Fink K, Nabors L, Li G, Bota D, Lukas R, Desjardins A, Ashby L, Duic J, Mrugala M, Werner A, Hawthome T, He Y, Green J, Yellin M, Tumer C, Davis T, Sampson J (2015) ReACT: Overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. J Clin Oncol 33 (suppl; abstr 2009)

  50. Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z, Bartek J (2008) Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 7:2553–2561

    Article  CAS  PubMed  Google Scholar 

  51. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J, Rich JN, Bartek J (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Verhoeff JJ, van Tellingen O, Claes A, Stalpers LJ, van Linde ME, Richel DJ, Leenders WP, van Furth WR (2009) Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer 9:444

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wildiers H, Guetens G, De Boeck G, Verbeken E, Landuyt B, Landuyt W, de Bruijn EA, van Oosterom AT (2003) Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer 88:1979–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thompson EM, Frenkel EP, Neuwelt EA (2011) The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology 76:87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, Park M, Bergers G (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ichikawa T, Otani Y, Kurozumi K, Date I (2016) Phenotypic transition as a survival strategy of glioma. Neurol Med Chir (Tokyo) 56:387–395

    Article  Google Scholar 

  59. Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121:276–283

    Article  CAS  PubMed  Google Scholar 

  60. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  CAS  PubMed  Google Scholar 

  61. Gabrusiewicz K, Liu D, Cortes-Santiago N, Hossain MB, Conrad CA, Aldape KD, Fuller GN, Marini FC, Alonso MM, Idoate MA, Gilbert MR, Fueyo J, Gomez-Manzano C (2014) Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes. Oncotarget 5:2208–2220

    Article  PubMed  PubMed Central  Google Scholar 

  62. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neurooncology 14:1379–1392

    CAS  Google Scholar 

  63. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  CAS  PubMed  Google Scholar 

  64. Shojaei F, Ferrara N (2008) Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res 68:5501–5504

    Article  CAS  PubMed  Google Scholar 

  65. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  CAS  PubMed  Google Scholar 

  66. Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, Lynch MP, Rueda BR, Chung DC (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11:992–997

    CAS  PubMed  Google Scholar 

  67. Mitsuhashi A, Goto H, Saijo A, Trung VT, Aono Y, Ogino H, Kuramoto T, Tabata S, Uehara H, Izumi K, Yoshida M, Kobayashi H, Takahashi H, Gotoh M, Kakiuchi S, Hanibuchi M, Yano S, Yokomise H, Sakiyama S, Nishioka Y (2015) Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat Commun 6:8792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  70. Labussière M, Cheneau C, Prahst C, Gállego Pérez-Larraya J, Farina P, Lombardi G, Mokhtari K, Rahimian A, Delattre JY, Eichmann A, Sanson M (2016) Angiopoietin-2 may be involved in the resistance to bevacizumab in recurrent glioblastoma. Cancer Investig 34:39–44

    Article  CAS  Google Scholar 

  71. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  72. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  CAS  PubMed  Google Scholar 

  73. Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169:1–11

    Article  CAS  PubMed  Google Scholar 

  74. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    Article  CAS  PubMed  Google Scholar 

  76. Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. Am J Neuroradiol 32:1978–1985

    Article  PubMed  Google Scholar 

  77. Kim BS, Kim SK, Choi SH, Lee SH, Seol HJ, Nam DH, Lee JI, Park CK, Kong DS (2015) Prognostic implication of progression pattern after anti-VEGF bevacizumab treatment for recurrent malignant gliomas. J Neurooncol 124:101–110

    Article  CAS  PubMed  Google Scholar 

  78. Nowosielski M, Wiestler B, Goebel G, Hutterer, Stockhammer G, Wick W, Bendszus M, Radbruch A (2014) Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology 82:1684–1692

    Article  CAS  PubMed  Google Scholar 

  79. Mong S, Ellingson BM, Nghiemphu PL, Kim HJ, Mirsadraei L, Lai A, Yong W, Zaw TM, Cloughesy TF, Pope WB (2012) Persistent diffusion-restricted lesions in bevacizumab-treated malignant gliomas are associated with improved survival compared with matched controls. Am J Neuroradiol 33:1763–1770

    Article  CAS  PubMed  Google Scholar 

  80. Schaub C, Greschus S, Seifert M, Waha A, Blasius E, Rasch K, Landwehr C, Mack F, Schäfer N, Stuplich M, Kebir S, Vilz B, Scheffler B, Boström J, Simon M, Urbach H, Glas M, Herrlinger U (2013) FLAIR-only progression in bevacizumab-treated relapsing glioblastoma does not predict short survival. Oncology 85:191–195

    Article  CAS  PubMed  Google Scholar 

  81. Nowosielski M, Recheis W, Goebel G, Güler O, Tinkhauser G, Kostron H, Schocke M, Gotwald T, Stockhammer G, Hutterer M (2011) ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma. Neuroradiology 53:291–302

    Article  PubMed  Google Scholar 

  82. Pope WB, Young JR, Ellingson BM (2011) Advances in MRI assessment of gliomas and response to anti-VEGF therapy. Curr Neurol Neurosci Rep 11:336–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McDonald CR, Delfanti RL, Krishnan AP, Leyden KM, Hattangadi-Gluth JA, Seibert TM, Karunamuni R, Elbe P, Kuperman JM, Bartsch H, Piccioni DE, White NS, Dale AM, Farid N (2016) Restriction spectrum imaging predicts response to bevacizumab in patients with high-grade glioma. Neurooncology 18:1579–1590

    Google Scholar 

  84. Kickingereder P, Wiestler B, Graf M, Heiland S, Schlemmer HP, Wick W, Wick A, Bendszus M, Radbruch A (2015) Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neurooncol 121:373–380

    Article  CAS  PubMed  Google Scholar 

  85. Choi SH, Jung SC, Kim KW, Lee JY, Choi Y, Park SH, Kim HS (2016) Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. J Neurooncol 128:185–194

    Article  CAS  PubMed  Google Scholar 

  86. Lavini C, Verhoeff JJ, Majoie CB, Stalpers LJ, Richel DJ, Maas M (2011) Model-based, semiquantitative and time intensity curve shape analysis of dynamic contrast-enhanced MRI: a comparison in patients undergoing antiangiogenic treatment for recurrent glioma. J Magn Reson Imaging 34:1303–1312

    Article  PubMed  Google Scholar 

  87. Cabrera AR, Cuneo KC, Desjardins A, Sampson JH, McSherry F, Herndon JE II, Peters KB, Allen K, Hoang JK, Chang Z, Craciunescu O, Vredenburgh JJ, Friedman HS, Kirkpatrick JP (2013) Concurrent stereotactic radiosurgery and bevacizumab in recurrent malignant gliomas: a prospective trial. Int J Radiat Oncol Biol Phys 86:873–879

    Article  CAS  PubMed  Google Scholar 

  88. Zukotynski KA, Fahey FH, Vajapeyam S, Ng SS, Kocak M, Gururangan S, Kun LE, Poussaint TY (2013) Exploratory evaluation of MR permeability with 18F-FDG PET mapping in pediatric brain tumors: a report from the Pediatric Brain Tumor Consortium. J Nucl Med 54:1237–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmainda KM, Prah M, Connelly J, Rand SD (2014) Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high grade glioma. Neurooncology 16:880–888

    CAS  Google Scholar 

  90. Kickingereder P, Wiestler B, Burth S, Wick A, Nowosielski M, Heiland S, Schlemmer HP, Wick W, Bendszus M, Radbruch A (2015) Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neurooncology 17:1139–1147

    CAS  Google Scholar 

  91. Harris RJ, Cloughesy TF, Hardy AJ, Liau LM, Pope WB, Nghiemphu PL, Lai A, Ellingson BM (2015) MRI perfusion measurements calculated using advanced deconvolution techniques predict survival in recurrent glioblastoma treated with bevacizumab. J Neurooncol 122:497–505

    Article  CAS  PubMed  Google Scholar 

  92. Kim H, Catana C, Ratai EM, Andronesi OC, Jennings DL, Batchelor TT, Jain RK, Sorensen AG (2011) Serial magnetic resonance spectroscopy reveals a direct metabolic effect of cediranib in glioblastoma. Cancer Res 71:3745–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ratai EM, Zhang Z, Snyder BS, Boxerman JL, Safriel Y, McKinstry RC, Bokstein F, Gilbert MR, Sorensen AG, Barboriak DP (2013) Magnetic resonance spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma. Neurooncology 15:936–944

    CAS  Google Scholar 

  94. Reithmeier T, Lopez WO, Spehl TS, Nguyen T, Mader I, Nikkhah G, Pinsker MO (2013) Bevacizumab as salvage therapy for progressive brain stem gliomas. Clin Neurol Neurosurg 115:165–169

    Article  CAS  PubMed  Google Scholar 

  95. Galldiks N, Rapp M, Stoffels G, Dunkl V, Sabel M, Langen KJ (2013) Earlier diagnosis of progressive disease during bevacizumab treatment using O-(2-18F-fluorethyl)-l-tyrosine positron emission tomography in comparison with magnetic resonance imaging. Mol Imaging 12:273–276

    PubMed  Google Scholar 

  96. Kawai N, Lin W, Cao WD, Ogawa D, Miyake K, Haba R, Maeda Y, Yamamoto Y, Nishiyama Y, Tamiya T (2014) Correlation between 18F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging 41:1870–1878

    Article  CAS  PubMed  Google Scholar 

  97. Yamaguchi S, Hirata K, Toyonaga T, Kobayashi K, Ishi Y, Motegi H, Kobayashi H, Shiga T, Tamaki N, Terasaka S, Houkin K (2016) Change in 18F-fluoromisonidazole PET is an early predictor of the prognosis in the patients with recurrent high-grade glioma receiving bevacizumab treatment. PLoS ONE 11:e0167917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lambrechts D, Lenz HJ, de Haas S, Carmeliet P, Scherer SJ (2013) Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 31:1219–1230

    Article  CAS  PubMed  Google Scholar 

  99. Hegde PS, Jubb AM, Chen D, Li NF, Meng YG, Bernaards C, Elliott R, Scherer SJ, Chen DS (2013) Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin Cancer Res 19:929–937

    Article  CAS  PubMed  Google Scholar 

  100. Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS, Batchelor TT, Jain RK (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33:1197–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nishikawa R, Saran F, Mason W, Wick W, Cloughesy T, Henriksson R, Hilton M, Garcia J, Vogt T, Pallaud C, Chinot O (2013) Biomarker (BM) evaluations in the phase III AVAglio study of bevacizumab (Bv) plus standard radiotherapy (RT) and temozolomide (T) for newly diagnosed glioblastoma (GBM). J Clin Oncol 31 (suppl; abstr 2023)

  102. Phillips H, Sandmann T, Li C, Cloughesy T, Chinot O, Wick W, Nishikawa R, Mason W, Henriksson R, Saran F, Lai A, Moore N, Hegde P, Abrey L, Bourgon R, Garcia J, Bais C (2014) Correlation of molecular subtypes with survival in AVAglio (bevacizumab and radiotherapy and temozolomide for newly diagnosed glioblastoma) J Clin Oncol 32 (suppl; abstr 2001)

  103. Gerstner ER, Eichler AF, Plotkin SR, Drappatz J, Doyle CL, Xu L, Duda DG, Wen PY, Jain RK, Batchelor TT (2011) Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide. J Neurooncol 103:325–332

    Article  CAS  PubMed  Google Scholar 

  104. Quant EC, Batchelor TT, Lassman AB, Kaley TJ, Mikkelsen T, Norden AD, Weiss SE, Alexander BM, Gerard M, Smith KH, Wen PY (2011) Preliminary results from a multicenter, phase II, randomized, noncomparative clinical trial of radiation and temozolomide with or without vandetanib in newly diagnosed glioblastoma (GBM). J Clin Oncol 29 (suppl; abstr 2069)

  105. Kessler T (2016) Predicting glioblastoma response to bevacizumab through marker profiling? Neurooncology 18:149–150

    Google Scholar 

  106. Tabouret E, Boudouresque F, Farina P, Barrié M, Bequet C, Sanson M, Chinot O (2015) MMP2 and MMP9 as candidate biomarkers to monitor bevacizumab therapy in high-grade glioma. Neurooncology 17:1174–1176

    Google Scholar 

  107. Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, Eichler AF, Drappatz J, Hochberg FH, Benner T, Louis DN, Cohen KS, Chea H, Exarhopoulos A, Loeffler JS, Moses MA, Ivy P, Sorensen AG, Wen PY, Jain RK (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28:2817–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baumgarten P, Blank AE, Franz K, Hattingen E, Dunst M, Zeiner P, Hoffmann K, Bähr O, Mäder L, Goeppert B, Machein M, Seifert V, Steinbach JP, Plate KH, Harter PN, Mittelbronn M (2016) Differential expression of vascular endothelial growth factor A, its receptors VEGFR-1, -2, and -3 and co-receptors neuropilin-1 and -2 does not predict bevacizumab response in human astrocytomas. Neurooncology 18:173–183

    Google Scholar 

  109. Siegal T, Charbit H, Paldor I, Zelikovitch B, Canello T, Benis A, Wong ML, Morokoff AP, Kaye AH, Lavon I (2016) Dynamics of circulating hypoxia-mediated miRNAs and tumor response in patients with high-grade glioma treated with bevacizumab. J Neurosurg 125:1008–1015

    Article  PubMed  Google Scholar 

  110. Hayes J, Thygesen H, Gregory W, Westhead DR, French PJ, Van Den Bent MJ, Lawler SE, Short SC (2016) A validated microRNA profile with predictive potential in glioblastoma patients treated with bevacizumab. Mol Oncol 10:1296–1304

    Article  CAS  PubMed  Google Scholar 

  111. Han S, Liu Y, Li Q, Li Z, Hou H, Wu A (2015) Pre-treatment neutrophil-to-lymphocyte ratio is associated with neutrophil and T-cell infiltration and predicts clinical outcome in patients with glioblastoma. BMC Cancer 15:617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. McNamara MG, Lwin Z, Jiang H, Templeton AJ, Zadeh G, Bernstein M, Chung C, Millar BA, Laperriere N, Mason WP (2014) Factors impacting survival following second surgery in patients with glioblastoma in the temozolomide treatment era, incorporating neutrophil/lymphocyte ratio and time to first progression. J Neurooncol 117:147–152

    Article  CAS  PubMed  Google Scholar 

  113. Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S, Martini C, Gustafsson JA, Doglioni C, Feo SG, Leiva A, Ciampa MG, Mauri L, Sensi C, Prinetti A, Eberini I, Mora JR, Bordignon C, Steffensen KR, Sonnino S, Sozzani S, Traversari C, Russo V (2013) The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med 210:1711–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tecchio C, Cassatella MA (2014) Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chem Immunol Allergy 99:123–137

    Article  CAS  PubMed  Google Scholar 

  115. Bertaut A, Truntzer C, Madkouri R, Kaderbhai CG, Derangère V, Vincent J, Chauffert B, Aubriot-Lorton MH, Farah W, Mourier KL, Boidot R, Ghiringhelli F (2016) Blood baseline neutrophil count predicts bevacizumab efficacy in glioblastoma. Oncotarget 7:70948–70958

    PubMed  PubMed Central  Google Scholar 

  116. Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A, Popoff S, Nutt CL, Louis DN, Cairncross JG, Gilbert MR, Phillips HS, Mehta MP, Chakravarti A, Pelloski CE, Bhat K, Feuerstein BG, Jenkins RB, Aldape K (2010) A multigene predictor of outcome in glioblastoma. Neurooncology 12:49–57

    CAS  Google Scholar 

  117. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  118. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sandmann T, Bourgon R, Garcia J, Li C, Cloughesy T, Chinot OL, Wick W, Nishikawa R, Mason W, Henriksson R, Saran F, Lai A, Moore N, Kharbanda S, Peale F, Hegde P, Abrey LE, Phillips HS, Bais C (2015) Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol 33:2735–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Erdem-Eraslan L, van den Bent MJ, Hoogstrate Y, Naz-Khan H, Stubbs A, van der Spek P, Böttcher R, Gao Y, de Wit M, Taal W, Oosterkamp HM, Walenkamp A, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, van der Holt B, Vernhout RM, Sillevis Smitt PA, Kros JM, French PJ (2016) Identification of patients with recurrent glioblastoma who may benefit from combined bevacizumab and CCNU therapy: a report from the BELOB trial. Cancer Res 76:525–534

    Article  CAS  PubMed  Google Scholar 

  121. Reardon DA, Nabors LB, Stupp R, Mikkelsen T (2008) Cilengitide: an integrin-targeting arginine–glycine–aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs 17:1225–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brenner A, Cohen Y, Vredenburgh J, Peters K, Blumenthal D, Bokstein F, Breitbart E, Bangio L, Sher N, Harats D, Wen P. (2014) Phase 1–2 dose-escalation study of VB-111, an anti-angiogenic gene therapy, as monotherapy and in combination with bevacizumab, in patients with recurrent glioblastoma. Neurooncology 16(suppl_5):v160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikaru Sasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, R., Tanaka, T., Miyake, K. et al. Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathol 34, 62–77 (2017). https://doi.org/10.1007/s10014-017-0284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-017-0284-x

Keywords

Navigation