Brain Tumor Pathology

, Volume 34, Issue 1, pp 1–7 | Cite as

Molecular mechanisms involved in gliomagenesis

  • Toru KondoEmail author
Review Article


The application of molecular parameters in the World Health Organization classification of central nervous system tumors has advanced remarkably in this field. Large-scale genomic DNA analyses, including gene expression profiling, genome-wide association studies, and single-nucleotide polymorphism analysis, have revealed differences between tumors with the same pathological features. Because mutated genes and their signaling pathways can be targets for therapy, categorizing tumors by molecular parameters facilitates the selection of optimal therapeutic methods. Many genes are either oncogenes or tumor suppressor genes, and many of them are also involved in normal development, such as neural stem cell maintenance and neural differentiation. Moreover, genetic engineering has enabled the generation of tumors that phenocopy human tumors in mice. Here, I will discuss key molecular parameters, mechanisms of neural differentiation, isocitrate dehydrogenases, 1p36/19q13, and p53 in gliomagenesis. Because future therapeutic methods will be determined by the molecular mechanisms of tumors, identification of new parameters is still needed for further classification of glioma.


Glial development Glioma IDHs 1p36/19q13 P53 



T.K. was supported, in part, by a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT), Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMedGoogle Scholar
  2. 2.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN; Cancer Genome Atlas Research Network (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  4. 4.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dimitrov L, Hong CS, Yang C, Zhuang Z, Heiss JD (2015) New developments in the pathogenesis and therapeutic targeting of the IDH1 mutation in glioma. Int J Med Sci 12:201–213CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145:1175–1190PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ueki K (2005) Oligodendroglioma: impact of molecular biology on its definition, diagnosis and management. Neuropathology 25:247–253CrossRefPubMedGoogle Scholar
  9. 9.
    Wesseling P, van den Bent M, Perry A (2015) Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:809–827CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gage F (2000) Mammalian neural stem cells. Science 287:1433–1438CrossRefPubMedGoogle Scholar
  11. 11.
    Temple S (2001) The development of neural stem cells. Nature 414:112–117CrossRefPubMedGoogle Scholar
  12. 12.
    Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273CrossRefPubMedGoogle Scholar
  13. 13.
    Kondo T (2006) Brain cancer stem-like cells. Eur J Cancer 42:1237–1242CrossRefPubMedGoogle Scholar
  14. 14.
    Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436CrossRefPubMedGoogle Scholar
  15. 15.
    Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T (2009) Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res 69:7953–7959CrossRefPubMedGoogle Scholar
  16. 16.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710CrossRefPubMedGoogle Scholar
  17. 17.
    Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966CrossRefPubMedGoogle Scholar
  18. 18.
    Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113:3897–3905PubMedGoogle Scholar
  19. 19.
    Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765CrossRefPubMedGoogle Scholar
  20. 20.
    Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ, Kieboom K, Tanger E, Hulsman D, Leung C, Arsenijevic Y, Marino S, van Lohuizen M (2005) Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 19:1438–1443CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432–1437CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483CrossRefPubMedGoogle Scholar
  23. 23.
    Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482CrossRefPubMedGoogle Scholar
  24. 24.
    Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677CrossRefPubMedGoogle Scholar
  25. 25.
    Kondo T, Raff M (2000) The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J 19:1998–2007CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fukuda S, Kondo T, Takebayashi H, Taga T (2004) Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ 11:196–202CrossRefPubMedGoogle Scholar
  27. 27.
    Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333:560–562CrossRefPubMedGoogle Scholar
  28. 28.
    Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD (1988) Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333:562–565CrossRefPubMedGoogle Scholar
  29. 29.
    Richardson WD, Pringle N, Mosley MJ, Westermark B, Dubois-Dalcq M (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53:309–319CrossRefPubMedGoogle Scholar
  30. 30.
    Rodriguez-Pena A (1999) Oligodendrocyte development and thyroid hormone. J Neurobiol 40:497–512CrossRefPubMedGoogle Scholar
  31. 31.
    Rowitch DH, S-Jacques B, Lee SM, Flax JD, Snyder EY, McMahon AP (1999) Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci 19:8954–8965PubMedGoogle Scholar
  32. 32.
    Mekki-Dauriac S, Agius E, Kan P, Cochard P (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129:5117–5130PubMedGoogle Scholar
  33. 33.
    Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27CrossRefPubMedGoogle Scholar
  34. 34.
    Shimizu T, Kagawa T, Wada T, Muroyama Y, Takada S, Ikenaka K (2005) Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev Biol 282:397–410CrossRefPubMedGoogle Scholar
  35. 35.
    Krämer-Albers EM, White R (2011) From axon-glial signaling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 68:2003–2012CrossRefPubMedGoogle Scholar
  36. 36.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, Ding J, Lei Q, Guan KL, Xiong Y (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang G, Sai K, Gong F, Yang Q, Chen F, Lin J (2014) Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via NK-κB activation in a hypoxia-inducible factor 1-α dependent manner. Mol Med Rep 9:1799–1805PubMedGoogle Scholar
  39. 39.
    Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, Cairns RA, McCracken S, Wakeham A, Haight J, Ten AY, Snow B, Ueda T, Inoue S, Yamamoto K, Ko M, Rao A, Yen KE, Su SM, Mak TW (2012) D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26:2038–2049CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bonner MY, Arbiser JL (2012) Targeting NADPH oxidases for the treatment of cancer and inflammation. Cell Mol Life Sci 69:2435–2442CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, Raff M (2004) Roles for p53 and p73 during oligodendrocyte development. Development 131:1211–1220CrossRefPubMedGoogle Scholar
  42. 42.
    Wolf RM, Wilkes JJ, Chao MV, Resh MD (2001) Tyrosine phosphorylation of p190 RhoGAP by Fyn regulates oligodendrocyte differentiation. J Neurobiol 49:62–78CrossRefPubMedGoogle Scholar
  43. 43.
    Wolf RM, Draghi N, Liang X, Dai C, Uhrbom L, Eklöf C, Westermark B, Holland EC, Resh MD (2003) p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19q13.3. Genes Dev 17:476–487CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bartolomé RA, Wright N, Molina-Ortiz I, Sánchez-Luque FJ, Teixidó J (2008) Activated G(alpha)13 impairs cell invasiveness through p190RhoGAP-mediated inhibition of RhoA activity. Cancer Res 68:8221–8230CrossRefPubMedGoogle Scholar
  45. 45.
    Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, Bredel M, Vogel H, Mills AA (2007) CHD5 is a tumor suppressor at human 1p36. Cell 128:459–475CrossRefPubMedGoogle Scholar
  46. 46.
    Chautard E, Ouédraogo ZG, Biau J, Verrelle P (2014) Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness. J Neurooncol 117:205–215CrossRefPubMedGoogle Scholar
  47. 47.
    Li X, Wu C, Chen N, Gu H, Yen A, Cao L, Wang E, Wang L (2016) PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 7:33440–33450Google Scholar
  48. 48.
    Kaneko S, Nakatani Y, Takezaki T, Hide T, Yamashita D, Ohtsu N, Ohnishi T, Terasaka S, Houkin K, Kondo T (2015) Ceacam1L Modulates STAT3 signaling to control the proliferation of glioblastoma-initiating cells. Cancer Res 75:4224–4234CrossRefPubMedGoogle Scholar
  49. 49.
    Yamashita D, Kondo T, Ohue S, Takahashi H, Ishikawa M, Matoba R, Suehiro S, Kohno S, Harada H, Tanaka J, Ohnishi T (2015) miR340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res 75:1123–1133CrossRefPubMedGoogle Scholar
  50. 50.
    Ohtsu N, Nakatani Y, Yamashita D, Ohue S, Ohnishi T, Kondo T (2016) Eva1 maintains the stem-like character of glioblastoma-initiating cells by activating the noncanonical NF-κB signaling pathway. Cancer Res 76:171–181CrossRefPubMedGoogle Scholar
  51. 51.
    Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405CrossRefPubMedGoogle Scholar
  52. 52.
    Hollstein M, Hainaut P (2010) Massibely regulated genes: the example of TP53. J Pathol 220:164–173PubMedGoogle Scholar
  53. 53.
    Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Reed SM, Quelle DE (2014) p53 acetylation: regulation and consequences. Cancer 7:30–69CrossRefGoogle Scholar
  56. 56.
    Tang J, Jiehui D, Cao H, Bai J, Zheng J (2015) p53-mediated autophagic regulation: A prospective strategy for cancer therapy. Cancer Lett 363:101–107CrossRefPubMedGoogle Scholar
  57. 57.
    Nilsson MB, Zage PE, Zeng L, Xu L, Cascone T, Wu HK, Saigal B, Zweidler-McKay PA, Heymach JV (2010) Multiple receptor tyrosine kinases regulate HIF-1alpha and HIF-2alpha in normoxia and hypoxia in neuroblastoma: implications for antiangiogenic mechanisms of multikinase inhibitors. Oncogene 29:2938–2949CrossRefPubMedGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2017

Authors and Affiliations

  1. 1.Division of Stem Cell Biology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan

Personalised recommendations