Advertisement

Brain Tumor Pathology

, Volume 32, Issue 1, pp 31–40 | Cite as

Oct-3/4 promotes tumor angiogenesis through VEGF production in glioblastoma

  • Hisaaki TakahashiEmail author
  • Akihiro Inoue
  • Yuya Kawabe
  • Yuki Hosokawa
  • Shinji Iwata
  • Kana Sugimoto
  • Hajime Yano
  • Daisuke Yamashita
  • Hironobu Harada
  • Shohei Kohno
  • Shiro Ohue
  • Takanori Ohnishi
  • Junya Tanaka
Original Article

Abstract

Accumulating evidence shows that the expression level of Oct-3/4, a self-renewal regulator in stem cells, is positively correlated with the progression of various solid tumors. However, little is known regarding the influence of Oct-3/4 in the tumor angiogenesis of glioblastomas. In the present study, we subcutaneously transplanted Oct-3/4-overexpressing human glioblastoma U251 (U251/EGFP-Oct-3/4) cells into the right thighs of nude mice to evaluate the roles of Oct-3/4 in the tumor angiogenesis. Both tumor size and the number of large vessels growing in the tumor were markedly increased. In an in vitro model of angiogenesis, the conditioned media from U251/EGFP-Oct-3/4 cells significantly accelerated capillary-like tube formation compared with that of U251/EGFP cells. In comparison with U251/EGFP cells, U251/EGFP-Oct-3/4 cells had markedly elevated the expression of vascular endothelial growth factor mRNA under the control of hypoxia-inducible factor (HIF) 1α. In U251/EGFP-Oct-3/4 cells, enhanced protein expression and nuclear translocation of HIF1α were observed. Furthermore, we demonstrated that the involvement of AKT, an oncogenic signaling molecule, in the Oct-3/4 induced upregulation of HIF1α protein. Our findings suggest that Oct-3/4-expressing glioblastoma cells have the ability to adapt to low-oxygen environments within tumor masses by promoting tumor angiogenesis through AKT-HIF1 pathway.

Keywords

Glioblastoma Oct-3/4 Angiogenesis VEGF HIF1 AKT 

Notes

Acknowledgments

We thank Dr. M. E. Choudhury for helpful comments on the manuscript. This research was supported in part by Grants-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Program for Scientific Research (C) No. 23592129 to H. T.).

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710PubMedCrossRefGoogle Scholar
  3. 3.
    Jovčevska I, Kočevar N, Komel R (2013) Glioma and glioblastoma: how much do we (not) know? Mol Clin Oncol 1:935–941PubMedCentralPubMedGoogle Scholar
  4. 4.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  5. 5.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  6. 6.
    Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRefGoogle Scholar
  7. 7.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  8. 8.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedCrossRefGoogle Scholar
  9. 9.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, Yano H, Tanaka J, Ohnishi T (2010) Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol 37:1121–1131PubMedGoogle Scholar
  11. 11.
    Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477PubMedCrossRefGoogle Scholar
  12. 12.
    Gidekel S, Pizov G, Bergman Y, Pikarsky E (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4:361–370PubMedCrossRefGoogle Scholar
  13. 13.
    Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL (2008) Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 68:6281–6291PubMedCrossRefGoogle Scholar
  14. 14.
    Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH, Lo JF (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14:4085–4095PubMedCrossRefGoogle Scholar
  15. 15.
    Du Z, Jia D, Liu S, Wang F, Li G, Zhang Y, Cao X, Ling EA, Hao A (2009) Oct4 is expressed in human gliomas and promotes colony formation in glioma cells. Glia 57:724–733PubMedCrossRefGoogle Scholar
  16. 16.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kobayashi K, Takahashi H, Inoue A, Harada H, Toshimori S, Kobayashi Y, Goto K, Sugimoto K, Yano H, Ohnishi T, Tanaka J (2012) Oct-3/4 promotes migration and invasion of glioblastoma cells. J Cell Biochem 113:508–517PubMedCrossRefGoogle Scholar
  18. 18.
    Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol 181:1126–1141PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Takahashi H, Matsumoto H, Kumon Y, Ohnishi T, Freeman C, Imai Y, Tanaka J (2007) Expression of heparanase in nestin-positive reactive astrocytes in ischemic lesions of rat brain after transient middle cerebral artery occlusion. Neurosci Lett 417:250–254PubMedCrossRefGoogle Scholar
  20. 20.
    Mazure NM, Chen EY, Laderoute KR, Giaccia AJ (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90:3322–3331PubMedGoogle Scholar
  21. 21.
    Richard DE, Berra E, Gothié E, Roux D, Pouysségur J (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1α) and enhance the transcriptional activity of HIF-1. J Biol Chem 274:32631–32637PubMedCrossRefGoogle Scholar
  22. 22.
    Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276:9519–9525PubMedCrossRefGoogle Scholar
  23. 23.
    Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A (2002) Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1α expression under normoxia. J Biol Chem 277:42919–42925PubMedCrossRefGoogle Scholar
  24. 24.
    Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA, Ko MS (2006) Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE 1:e26PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, Poon RT, Fan ST (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52:528–539PubMedCrossRefGoogle Scholar
  26. 26.
    Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927PubMedCrossRefGoogle Scholar
  27. 27.
    Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848PubMedCrossRefGoogle Scholar
  28. 28.
    Plate KH, Breier G, Weich HA, Mennel HD, Risau W (1994) Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59:520–529PubMedCrossRefGoogle Scholar
  29. 29.
    Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, Tewari M, Liu A, Vessella R, Rostomily R, Born D, Horwitz M, Ware C, Blau CA, Cleary MA, Rich JN, Ruohola-Baker H (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Iacobuzio-Donahue CA (2009) Epigenetic changes in cancer. Annu Rev Pathol 4:229–249PubMedCrossRefGoogle Scholar
  33. 33.
    Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–1047PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY, Ku HH, Chiou SH (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE 3:e2637PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396PubMedCentralPubMedGoogle Scholar
  36. 36.
    Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234PubMedCrossRefGoogle Scholar
  37. 37.
    Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279:24218–24225PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2014

Authors and Affiliations

  • Hisaaki Takahashi
    • 1
    • 4
    Email author
  • Akihiro Inoue
    • 2
  • Yuya Kawabe
    • 1
  • Yuki Hosokawa
    • 1
  • Shinji Iwata
    • 1
  • Kana Sugimoto
    • 3
  • Hajime Yano
    • 1
  • Daisuke Yamashita
    • 2
  • Hironobu Harada
    • 2
  • Shohei Kohno
    • 2
  • Shiro Ohue
    • 2
  • Takanori Ohnishi
    • 2
  • Junya Tanaka
    • 1
  1. 1.Department of Molecular and Cellular Physiology, Graduate School of MedicineEhime UniversityToonJapan
  2. 2.Department of Neurosurgery, Graduate School of MedicineEhime UniversityToonJapan
  3. 3.Department of Legal Medicine, Graduate School of MedicineOsaka UniversitySuitaJapan
  4. 4.Center for Advanced Research and EducationAsahikawa Medical UniversityAsahikawaJapan

Personalised recommendations