Let us consider the balance conditions (5)–(8). We are interested in analyzing the discrete counterparts of TF, TW, TFa and TWa in order to measure the conservation properties of a non-conforming domain decomposition method like Internodes. As a matter of fact, it is not guaranteed that all such discrete counterparts are null, even when the meshes are conforming on Γ and the polynomial degrees coincide in the two subdomains.
Let \(\mathcal {E}_{{{{\varGamma }}}_{k}}\) be the set of the edges of the elements in \(\mathcal {T}_{k,h}\) that belong to Γk (see Fig. 2) and define
$$ \begin{array}{@{}rcl@{}} TF_{h} &=& \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{1}}}{\int}_{e} \nu\frac{\partial u_{1,h}}{\partial\textbf{n}_{1}} + \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{2}}}{\int}_{e} \nu\frac{\partial u_{2,h}}{\partial\textbf{n}_{2}}, \\ TW_{h} &=& \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{1}}}{\int}_{e} \nu\frac{\partial u_{1,h}}{\partial\textbf{n}_{1}} u_{1,h} + \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{2}}}{\int}_{e} \nu\frac{\partial u_{2,h}}{\partial\textbf{n}_{2}} u_{2,h}, \\ TF_{a,h} &=& \sum\limits_{k=1,2}\left[a_{k}(u_{k,h},\overline{\mathcal{R}}_{k}1) - \mathcal{F}_{k}(\overline{\mathcal{R}}_{k}1)\right], \\ TW_{a,h} &=& \sum\limits_{k=1,2}\left[a_{k}(u_{k,h},\overline{u}_{k}) - \mathcal{F}_{k}(\overline{u}_{k})\right], \end{array} $$
where \(\overline {u}_{k}=\overline {\mathcal {R}}_{k}({u_{k,h}}|_{{{{\varGamma }}}_{k}})\) is the finite-element extension of \(u_{k,h}|_{{{{\varGamma }}}_{k}}\) to Ωk.
Although the identities TF = TFa and TW = TWa are guaranteed at the continuous level, analogous identities are no longer valid at the discrete level. Indeed, by counter-integrating by parts both TFa, h and TWa, h, we obtain
$$ TF_{a,h}=TF_{h} + \sum\limits_{k=1,2}B_{k}(u_{k,h}, \overline{\mathcal{R}}_{k} 1), \quad TW_{a,h}=TW_{h} + \sum\limits_{k=1,2}B_{k}(u_{k,h},\overline{u}_{k}), $$
where
$$ \begin{array}{@{}rcl@{}} B_{k}(u_{k,h},\overline{\mu}_{k}) &=& \sum\limits_{T\in \omega_{k}}{\int}_{T}(Lu_{k,h}-f) \overline{\mu}_{k} + \sum\limits_{e\in\mathcal{E}_{k}}{\int}_{e} [\![\nu\nabla u_{k,h}]\!]\overline{\mu}_{k}\\ &&+\sum\limits_{e\in \mathcal{E}_{k,N}}{\int}_{e} \left( \nu\frac{\partial u_{k,h}}{\partial\textbf{n}_{k}}-g_{N}\right)\overline{\mu}_{k}, \end{array} $$
(21)
\(\overline {\mu }_{k}=\overline {\mathcal {R}}_{k} \mu _{k,h}\) is the finite-dimensional extension to Ωk of any μk, h ∈ Yk, h, [ [w] ] = w+ ⋅n+ + w−⋅n− (following the standard notation of Discontinuous Galerkin methods), \(\mathcal {E}_{k,N}\) is the set of the edges of the elements in \(\mathcal {T}_{k,h}\) that belong to ∂Ωk, N, ωk is the set of elements in \(\mathcal {T}_{k,h}\) having an edge on Γk, and \(\mathcal {E}_{k}\) is the set of the edges internal to Ωk (see Fig. 2). Notice that the finite element extension \(\overline {\mathcal {R}}_{k} \mu _{k,h}\) is null on the blue edges that are not internal to ωk.
Algebraic Form of T
F
a, h and T
W
a, h
The terms TFa, h and TWa, h are strictly connected with the residual arrays \(\textbf {r}^{(k)}_{{{{\varGamma }}}}\) introduced in Section 3, and they can be easily computed by algebraic operations as follows [10]. We denote by 1(k) the array of size nk whose entries are all equal to 1. It holds:
$$ \begin{array}{@{}rcl@{}} (\textbf{1}^{(k)})^{T} {\textbf{r}}_{{{{\varGamma}}}}^{(k)} &=& \sum\limits_{i=1}^{n_{k}} r_{k,i}= a_{k}(u_{k,h}, \overline{\mathcal{R}}_{k} 1)-\mathcal{F}_{k}(\overline{\mathcal{R}}_{k} 1),\\ ({\textbf{u}}_{{{{\varGamma}}}}^{(k)})^{T} \textbf{r}^{(k)}_{{{{\varGamma}}}} &=& \sum\limits_{i=1}^{n_{k}} u_{{{{\varGamma}}}_{k},i}r_{k,i} = a_{k}(u_{k,h}, \overline{u}_{k}) - \mathcal{F}_{k}(\overline{u}_{k}), \end{array} $$
where we have exploited definition (11), the fact that the Lagrange basis functions \(\mu ^{(k)}_{i}\) of Yk, h satisfy the unity partition property, i.e., \({\sum }_{i=1}^{n_{k}} \mu ^{(k)}_{i}\equiv 1\), and that \(\overline {u}_{k}=\overline {\mathcal {R}}_{k}({u_{k,h}}|_{{{{\varGamma }}}_{k}})\).
It follows that
$$ TF_{a,h}=(\textbf{1}^{(1)})^{T} {\textbf{r}}_{{{{\varGamma}}}}^{(1)} +(\textbf{1}^{(2)})^{T} {\textbf{r}}_{{{{\varGamma}}}}^{(2)}, \qquad TW_{a,h}= ({\textbf{u}}_{{{{\varGamma}}}}^{(1)})^{T} {\textbf{r}}_{{{{\varGamma}}}}^{(1)} +({\textbf{u}}_{{{{\varGamma}}}}^{(2)})^{T} {\textbf{r}}_{{{{\varGamma}}}}^{(2)}. $$
Thus, it turns out very convenient to measure the conservation properties of a method by evaluating TFa, h and TWa, h by using these algebraic relations.
The Mortar Method
By adopting similar notations used to write the algebraic form (15) of the Internodes method, we write the algebraic counterpart of the Mortar method, which, instead to interpolate the trace and the normal derivative at the interface, is based on a projection process.
To this aim, let us denote by \(\widetilde {P}\) the matrix implementing the projection of the trace from the interface Γ1 to Γ2. Then we notice that Mortar is a symmetric method, in the sense that the operator used to move from Γ2 to Γ1 is the transposed operator of \(\widetilde {P}\).
The algebraic form of Mortar reads:
$$ \left\{ \begin{array}{ll} {A}_{II}^{(k)} {\textbf{u}}_{I}^{(k)}+{A}_{I{{{\varGamma}}}}^{(k)} {\textbf{u}}_{{{{\varGamma}}}}^{(k)}={\textbf{f}}_{I}^{(k)} & \text{ for }k=1,2,\\ {\textbf{u}}_{{{{\varGamma}}}}^{(2)}=\widetilde{P}{\textbf{u}}_{{{{\varGamma}}}}^{(1)},\\ {\textbf{r}}_{{{{\varGamma}}}}^{(1)}+\widetilde{P}^{T}{\textbf{r}}_{{{{\varGamma}}}}^{(2)} =\textbf{0}. \end{array}\right. $$
(22)
Since the projection matrix \(\widetilde {P}\) satisfies the property \(\widetilde {P} \textbf {1}_{1}=\textbf {1}_{2}\) (this means that a constant function on Γ1 is mapped on the same constant function on Γ2), the identities
$$ TF_{a,h} = \sum\limits_{k=1,2}(\textbf{1}^{(k)})^{T} \textbf{r}^{(k)}_{{{{\varGamma}}}}=0 \qquad\text{ and } \qquad TW_{a,h}=\sum\limits_{k=1,2}(\textbf{u}^{(k)})^{T} \textbf{r}^{(k)}_{{{{\varGamma}}}} = 0 $$
(23)
immediately follow from (22)2,3.
The Internodes Method
On the contrary the Internodes method is not symmetric, since the two intergrid matrices P21 and \(M_{{{{\varGamma }}}_{1}}P_{21}M_{{{{\varGamma }}}_{2}}^{-1}\) are not one the transpose of the other, thus there is no way that (23) are exactly satisfied by Internodes, but in the next Section we will prove that both TFa, h ans TWa, h provided by Internodes go to zero like the broken-norm error when h1, h2 tend to zero with the same rate. Clearly this result is weaker than (23), nevertheless we know that the broken-norm error of the Internodes method behaves like that of the Mortar method [16], and numerical results (see Section 5) show that TFh and TWh behave in the same manner for Internodes and Mortar methods.
Thus the question is: Are (23) necessary and sufficient conditions to guarantee that a method is conservative and, not less important, accurate?
We state that TFa, h = 0 and TWa, h = 0 alone do not guarantee that the coupling method one is using is convergent. This is the case of the Weighted Average Continuity Approach (WACA) proposed in [10, Sect. 3.5].
WACA
WACA can be formulated like (22), but with the matrix \(\widetilde {P}\) replaced by \(M_{{{{\varGamma }}}_{2}}^{-1}S_{2}P_{21}S_{1}^{-1}M_{{{{\varGamma }}}_{1}}\), where \(M_{{{{\varGamma }}}_{k}}\) are the interface mass matrices defined in (13), P21 is the interpolation matrix associated with the interpolation operator π21 (see (9)), while Sk is the lumped interface mass matrixFootnote 1 on Γk. In view of the symmetry of WACA (like for Mortar), the identities (23) are satisfied.
However, when the discretization in almost one subdomain is based on \({\mathbb {Q}}_{p}\) Spectral Element Methods with Numerical Integration (SEM–NI), in virtue of the fact the SEM–NI mass matrix is diagonal, we have that \(S_{k}=M_{{{{\varGamma }}}_{k}}\) and \(\widetilde {P}=P_{21}\), so that WACA method coincides with the so-called pointwise matching method that was presented in the seminal mortar paper [6, eqs. (3.5)–(3.7)] and that is notoriously sub-optimal, as proven in [6, Sect. 3.2] and numerically corroborated in [2] for spectral elements discretizations (see also Fig. 5).
Analysis of Conservation Properties
So far, set \(h=\max \limits \{h_{1},h_{2}\}\) and let us give the following definition of conservation for a multidomain approach.
Definition 1
A multidomain approach is conservative at least of order q with respect to h if |TFh|, |TWh|, |TFa, h| and |TWa, h| are \(\mathcal {O}(h^{q})\) when h tends to zero.Footnote 2
Analysis of Conservation Properties of the Internodes Method
The following theorems ensure that the discrete total force TFh and TFa, h and the discrete total work TWh and TWa, h converge to zero as optimally as the broken-norm error (20) and then, that the Internodes method is conservative of the same order of the broken-norm error.
In the whole Section make the following assumption.
Assumption 2
Let us assume that the discretisation of the interface Γ is geometrically conforming, i.e., \(\cup _{e\in \mathcal {E}_{{{{\varGamma }}}_{1}}} e = \cup _{e\in \mathcal {E}_{{{{\varGamma }}}_{2}}} e = {{{\varGamma }}}\) and that the intergrid operators π12 and π21 are based on the Lagrange interpolation. We also assume that there exist two positive constants c1 and c2 such that c1 ≤ h1/h2 ≤ c2 when h1, h2 → 0.
Remark 4
When the interfaces are not geometrically conforming, we have two difficulties in analysing the conservation properties: first we should be able to quantify the non-conformity of geometric type (and this is not often possible), second we should have convergence estimates of the Internodes method when RBF interpolation instead of Lagrange interpolation is used, and we do not have it. We notice that, for high polynomial degree p (typically when p ≥ 5), the RBF interpolation does not always exploit the same convergence order of the Lagrange interpolation and this can downgrade the accuracy of the Internodes method.
Theorem 2
Let Assumptions 1 and 2 be satisfied. If u ∈ Hs(Ω) with s > 3/2, then there exists a positive constant C depending on the data (the domain and the coefficient functions) and on the exact solution u, but independent of h1 and h2 such thatFootnote 3
$$ |TF_{h}|\leq C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right), \quad \text{ and }\quad |TW_{h}|\leq C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right), $$
where, for k = 1,2, \(\ell _{k}=\min \limits (s,p_{k}+1)\), where pk is the polynomial degree in the domain Ωk.
Proof
First we analyse TFh. Since \(\cup _{e\in \mathcal {E}_{{{{\varGamma }}}_{k}}} e\) for k = 1,2, and n1 = −n2, we have
$$ \begin{array}{@{}rcl@{}} TF_{h} &=& \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{1}}}{\int}_{e} \nu\frac{\partial u_{1,h}}{\partial\textbf{n}_{1}}+ \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{2}}}{\int}_{e} \nu\frac{\partial u_{2,h}}{\partial\textbf{n}_{2}}\\ &=& {\int}_{{{{\varGamma}}}} \nu\frac{\partial u_{1,h}}{\partial\textbf{n}_{1}} + {\int}_{{{{\varGamma}}}} \nu\frac{\partial u_{2,h}}{\partial\textbf{n}_{2}} \\ &=& {\int}_{{{{\varGamma}}}} \nu\frac{\partial u_{1,h}}{\partial\textbf{n}_{1}} - {\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{1}} - {\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{2}} + {\int}_{{{{\varGamma}}}} \nu\frac{\partial u_{2,h}}{\partial\textbf{n}_{2}}\\ &=& {\int}_{{{{\varGamma}}}} \nu\frac{\partial \left( u_{1,h} - u\right)}{\partial\textbf{n}_{1}} + {\int}_{{{{\varGamma}}}} \nu\frac{\partial \left( u_{2,h} - u\right) }{\partial\textbf{n}_{2}}. \end{array} $$
From Cauchy–Schwarz inequality and the trace theorem for polygons and polyhedra [21, 27], we have that
$$ \begin{array}{@{}rcl@{}} |TF_{h}| &\leq& \|\nu\|_{L^{\infty}({{{\varOmega}}})} |{{{\varGamma}}}| \sum\limits_{k=1,2} \left\|\frac{\partial \left( u_{k,h} - u\right)}{\partial\textbf{n}_{k}} \right\|_{H^{-1/2}({{{\varGamma}}})}\\ &\leq& C \sum\limits_{k=1,2} \|u_{k,h} - u\|_{H^{1}({{{\varOmega}}}_{k})}\leq C {\textsf{E}}. \end{array} $$
The proof for TWh needs few more steps and is based on similar arguments:
$$ \begin{array}{@{}rcl@{}} TW_{h} &=& \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{1}}}{\int}_{e} \nu\frac{\partial u_{1,h}}{\partial\textbf{n}_{1}} u_{1,h} + \sum\limits_{e\in \mathcal{E}_{{{{\varGamma}}}_{2}}}{\int}_{e} \nu\frac{\partial u_{2,h}}{\partial\textbf{n}_{2}} u_{2,h}\\ &=& {\int}_{{{{\varGamma}}}} \nu\frac{\partial u_{1,h}}{\partial\textbf{n}_{1}} u_{1,h} + {\int}_{{{{\varGamma}}}} \nu\frac{\partial u_{2,h}}{\partial\textbf{n}_{2}} u_{2,h} - {\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{1}} u - {\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{2}} u \\ &=& \sum\limits_{k=1,2}\left[ {\int}_{{{{\varGamma}}}} \nu\frac{\partial u_{k,h}}{\partial\textbf{n}_{k}} u_{k,h} -{\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{k}} u_{k,h} +{\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{k}} u_{k,h} - {\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{k}} u \right]\\ &=& \sum\limits_{k=1,2}\left[ {\int}_{{{{\varGamma}}}} \nu\left( \frac{\partial u_{k,h}}{\partial\textbf{n}_{k}} - \frac{\partial u}{\partial\textbf{n}_{k}} \right) u_{k,h} +{\int}_{{{{\varGamma}}}} \nu\frac{\partial u}{\partial\textbf{n}_{k}} \left( u_{k,h} - u \right)\right]. \end{array} $$
Thanks to the trace theorem for Sobolev spaces and the triangle inequality, we also have that
$$ \begin{array}{@{}rcl@{}} \|u_{k,h}\|_{H^{1/2}({{{\varGamma}}})} &\leq& c\|u_{k,h}\|_{H^{1}({{{\varOmega}}}_{k})} \leq c\left( \|u_{k,h} - u|_{{{{\varOmega}}}_{k}}\|_{H^{1}({{{\varOmega}}}_{k})} + \|u|_{{{{\varOmega}}}_{k}}\|_{H^{1}({{{\varOmega}}}_{k})}\right)\\ &\leq& (c h_{k}^{\ell_{k}-1} + 1) \|u|_{{{{\varOmega}}}_{k}}\|_{H^{1}({{{\varOmega}}}_{k})} \leq (c h_{k}^{\ell_{k}-1} + 1)\|u\|_{H^{1/2}({{{\varGamma}}})}, \end{array} $$
(24)
where c is a positive constant depending on Ωk but independent of u. Then, recalling that λ = u|Γ and λk, h = (uk, h)|Γ, exploiting again the trace inequality and the estimate (18), when h1, h2 → 0 we get
$$ \begin{array}{@{}rcl@{}} |TW_{h}| &\leq& C\sum\limits_{k=1,2}\left[ \left\|\frac{\partial\left( u_{k,h} - u\right)}{\partial\textbf{n}_{k}} \right\|_{H^{-1/2}({{{\varGamma}}})} \|u\|_{H^{1/2}({{{\varGamma}}})}\right.\\ && \qquad\quad \left. + \left\|\frac{\partial u}{\partial \textbf{n}_{k}}\right\|_{H^{-1/2}({{{\varGamma}}})} \|\lambda_{k,h} - \lambda_{k}\|_{H^{1/2}({{{\varGamma}}})}\right]\\ &\leq& C\sum\limits_{k=1,2}\left[ \| u_{k,h} - u\|_{H^{1}({{{\varOmega}}}_{k})} \|u\|_{H^{1/2}({{{\varGamma}}})} + \left\|\frac{\partial u}{\partial \textbf{n}_{k}}\right\|_{H^{-1/2}({{{\varGamma}}})} \|u_{k,h}-u \|_{H^{1}({{{\varOmega}}})}\right]\\ &\leq & C {\textsf{E}}. \end{array} $$
The proof is completed. □
Now we are going to analyse the terms TFa, h and TWa, h. To this aim, we exploit the results proved in [16] after reformulating the problem (4) like a three fields problem as follows.
Let λ1 and λ2 ∈Λ represent the (a-priori) different traces of u1 and u2 on Γ and \(r_{2}\in {{{\varLambda }}}^{\prime }\) the conormal derivative \(\frac {\nu \partial u_{2}}{\partial \textbf {n}_{2}}\) on Γ, then problem (4) is equivalent to looking for λ1 ∈Λ, λ2 ∈Λ, and \({r}_{2}\in {{{\varLambda }}}^{\prime }\) s.t. (see [16, Theorem 2])
$$ \left\{\begin{array}{ll} \displaystyle\sum\limits_{k=1,2} a_{k} (u_{k}^{\lambda_{k}},\mathcal{R}_{k}\mu_{k}) + \langle {r}_{2},\mu_{1}- \mu_{2}\rangle = \sum\limits_{k=1,2} [(f,\mathcal{R}_{k}\mu_{k})_{L^{2}({{{\varOmega}}}_{k})} -a_{k}({\widehat{u}}_{k},\mathcal{R}_{k}\mu_{k})] \\ {\kern214pt} \forall (\mu_{1},\mu_{2})\in {{{\varLambda}}}\times{{{\varLambda}}},\\ \langle {t},\lambda_{1}-\lambda_{2}\rangle=0 {\kern151pt} \forall {t}\in {{{\varLambda}}}^{\prime}, \end{array}\right. $$
(25)
where 〈⋅,⋅〉 denotes the duality between Λ and \({{{\varLambda }}}^{\prime }\).
Similarly (see [16, Theorem 3]), the Internodes problem (10) can be written in an equivalent formulation with 3 fields λ1,h ∈Λ1,h, λ2,h ∈Λ2,h, and \(r_{2,h}\in {{{\varLambda }}}_{2,h}^{\prime }\) that are the discrete counterparts of λ1, λ2 and r2, respectively, as follows: find λ1,h ∈Λ1,h, λ2,h ∈Λ2,h, and \({r}_{2,h}\in {{{\varLambda }}}_{2,h}^{\prime }\) s.t.
$$ \left\{\begin{array}{r} \displaystyle\sum\limits_{k=1,2} a_{k}(\overline{\mathcal{H}}_{k}\lambda_{k,h}, \overline{\mathcal{R}}_{k} \mu_{k,h}) +\langle {{{\varPi}}}_{12}{r}_{2,h},\mu_{1,h}\rangle - \langle {r}_{2,h},\mu_{2,h}\rangle\\ = \displaystyle\sum\limits_{k=1,2} \left[(f,\overline{\mathcal{R}}_{k} \mu_{k,h})_{L^{2}({{{\varOmega}}}_{k})}- a_{k}({\widehat U}_{k}, \overline{\mathcal{R}}_{k} \mu_{k,h})\right]\\ {\forall (\mu_{1,h},\mu_{2,h})\in{{{\varLambda}}}_{1,h}\times{{{\varLambda}}}_{2,h},}\\ \langle t_{2,h},\lambda_{2,h} - {{{\varPi}}}_{21}\lambda_{1,h}\rangle=0 {\kern72pt} { \forall {t}_{2,h}\in {{{\varLambda}}}_{2,h}^{\prime},} \end{array}\right. $$
(26)
where \(\overline {{\mathscr{H}}}_{k}\lambda _{k,h}\) is the discrete counterpart of \(u_{k}^{\lambda }\) and \({\widehat U}_{k}\) is the discrete counterpart of \(\widehat {u}_{k}\).
For any (μ1,h, μ2,h) ∈Λ1,h ×Λ2,h, we define
$$ T_{a,h}(\mu_{1,h},\mu_{2,h})=\sum\limits_{k=1,2}\left[a_{k}(u_{k,h}, \overline{\mathcal{R}}_{k}\mu_{k,h})-{\mathcal{F}}_{k}(\overline{\mathcal{R}}_{k}\mu_{k,h})\right] $$
and, in view of (26)1 and the fact that \(u_{k,h}=\overline {{\mathscr{H}}}_{k}\lambda _{k,h}+{\widehat U}_{k}\), it holds
$$ T_{a,h}(\mu_{1,h},\mu_{2,h})=\langle r_{2,h},\mu_{2,h}\rangle-\langle {{{\varPi}}}_{12}r_{2,h}, \mu_{1,h}\rangle, $$
and we have
$$ TF_{a,h}=T_{a,h}(1,1), \qquad TW_{a,h}=T_{a,h}({u_{1,h}}|_{{{{\varGamma}}}},{u_{2,h}}|_{{{{\varGamma}}}}). $$
It is useful to define also
$$ T_{a}(\mu_{1},\mu_{2})=\sum\limits_{k=1,2}\left[a_{k}(u_{k}, {\mathcal{R}}_{k}\mu_{k})-{\mathcal{F}}_{k}({\mathcal{R}}_{k}\mu_{k})\right] $$
for any (μ1, μ2) ∈Λ×Λ. In view of (25)1 and the fact that \(u_{k}=u^{\lambda }_{k}+\widehat {u}_{k}\), we can also write
$$ T_{a}(\mu_{1},\mu_{2})=\langle r_{2}, \mu_{2}-\mu_{1}\rangle $$
and notice that
$$ TF_{a}=T_{a}(1,1), \qquad TW_{a}=T_{a}({u_{1}}|_{{{{\varGamma}}}},{u_{2}}|_{{{{\varGamma}}}}). $$
In the next theorem we are going to prove that |TFa, h| and |TWa, h| behave like the broken-norm error (20) when h1/h2 is uniformly bounded from below and above.
Theorem 3
Under the assumptions of Theorem 2, there exists a positive constant C depending on the data (the domain and the coefficient functions) and on the exact solution u, but independent of h1 and h2 such that
$$ |TF_{a,h}|\leq C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right), \quad \text{ and }\quad |TW_{a,h}|\leq C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right). $$
Proof
Recalling that Ta(μ1, μ2) = 0 for any (μ1, μ2) ∈Λ×Λ, it holds
$$ \begin{array}{@{}rcl@{}} |T_{a,h}(\mu_{1,h},\mu_{2,h})|&=&|T_{a}(\mu_{1},\mu_{2})-T_{a,h}(\mu_{1,h},\mu_{2,h})|\\ &=& |\langle r_{2},\mu_{1}-\mu_{2}\rangle-\langle {{{\varPi}}}_{12}r_{2,h}, \mu_{1,h}\rangle +\langle r_{2,h},\mu_{2,h}\rangle|(\pm \langle r_{2},\mu_{1,h}-\mu_{2,h}\rangle)\\ &\leq & \sum\limits_{k=1,2} |\langle r_{2},\mu_{k}-\mu_{k,h}\rangle|+|\langle r_{2}-r_{2,h},\mu_{2,h}\rangle|+|\langle r_{2}-{{{\varPi}}}_{12}r_{2,h},\mu_{1,h}\rangle|. \end{array} $$
Because we are interested in bounding |TFa, h| and |TWa, h| (that is μ1,h = μ2,h = 1 in the first case and \(\mu _{k,h}=\lambda _{k,h}={u_{k,h}}|_{{{{\varGamma }}}_{k}}\) in the second one), when μ1,h = μ2,h = 1 we choose μ1 = μ2 = 1, while when \(\mu _{k,h}=\lambda _{k,h}={u_{k,h}}|_{{{{\varGamma }}}_{k}}\) we choose μk = λ = u|Γ. We bound each term as follows:
-
First we apply the Cauchy–Schwarz inequality
$$ \sum\limits_{k=1,2} |\langle r_{2},\mu_{k}-\mu_{k,h}\rangle|\leq \|r_{2}\|_{H^{-1/2}({{{\varGamma}}})}\left( \|\mu_{1}-\mu_{1,h}\|_{H^{1/2}({{{\varGamma}}})}+\|\mu_{2}-\mu_{2,h}\|_{H^{1/2}({{{\varGamma}}})}\right). $$
Now, if μ1,h = μ2,h = 1 (and μ1 = μ2 = 1), the left-hand side of the previous formula is null; on the other hand, if \(\mu _{k,h}=\lambda _{k,h}={u_{k,h}}|_{{{{\varGamma }}}_{k}}\) (and μk = λ = u|Γ), by applying (20), we have
$$ \sum\limits_{k=1,2} |\langle r_{2},\lambda_{k}-\lambda_{k,h}\rangle|\leq C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right). $$
Notice that r2 is related to the exact solution u and its norm is included in the constant C.
-
By applying the Cauchy–Schwarz inequality and (20) it holds
$$ \begin{array}{@{}rcl@{}} |\langle r_{2}-r_{2,h},\mu_{2,h}\rangle|&\leq& \|r_{2}-r_{2,h}\|_{H^{-1/2}({{{\varGamma}}})} \|\mu_{2,h}\|_{H^{1/2}({{{\varGamma}}})}\\ &\leq & C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right)\|\mu_{2,h}\|_{H^{1/2}({{{\varGamma}}})}. \end{array} $$
If μ2,h = 1, then \(\|\mu _{2,h}\|_{H^{1/2}({{{\varGamma }}})}\) is the measure of Γ; while if \(\mu _{2,h}={u_{2,h}}|_{{{{\varGamma }}}_{2}}\), by applying (24) we can conclude
$$ |\langle r_{2}-r_{2,h},\mu_{2,h}\rangle|\leq C \left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right). $$
-
Let \(t_{2}=\pi _{h_{2}}r_{2}\) denote the L2-projection of r2 onto Y2,h. By applying the triangle inequality it holds
$$ \begin{array}{@{}rcl@{}} |\langle r_{2}-{{{\varPi}}}_{12}r_{2,h},\mu_{1,h}\rangle| &\leq& |\langle r_{2}-t_{2},\mu_{1,h}\rangle|+ |\langle t_{2}-{{{\varPi}}}_{12}t_{2},\mu_{1,h}\rangle|\\ &&+ |\langle {{{\varPi}}}_{12}(t_{2}-r_{2,h}),\mu_{1,h}\rangle|. \end{array} $$
We examine each term in the right-hand side of the previous inequality:
-
by Cauchy–Schwarz inequality and the projection error [16, (115)] it holds
$$ \begin{array}{@{}rcl@{}} |\langle r_{2}-t_{2},\mu_{1,h}\rangle|&\leq& \|r_{2}-t_{2}\|_{H^{-1/2}({{{\varGamma}}})} \|\mu_{1,h}\|_{H^{1/2}({{{\varGamma}}})}\\ &\leq& c h_{2}^{\zeta_{2}+1/2}\|r_{2}\|_{H^{\tau}({{{\varGamma}}})} \|\mu_{1,h}\|_{H^{1/2}({{{\varGamma}}})}, \end{array} $$
where ζ2 has been introduced in Theorem 1.
-
by interpreting the duality 〈t2 −π12t2, μ1,h〉 as L2-product on Γ (both terms are finite dimensional) and applying the same arguments used in the proof of Theorem 10 of [16], we have
$$ \begin{array}{@{}rcl@{}} |\langle t_{2}-{{{\varPi}}}_{12}t_{2},\mu_{1,h}\rangle|&\leq& c h_{1}^{1/2} \|t_{2}-{{{\varPi}}}_{12} t_{2}\|_{L^{2}({{{\varGamma}}})} \|\mu_{1,h}\|_{L^{2}({{{\varGamma}}})} \\ &\leq& ch_{1}^{1/2}\!\!\left( \!\!\alpha h_{1}^{\zeta_{1}+1/2} + \left( \!\!1 + \left( \frac{h_{1}}{h_{2}}\!\right)^{z}\!\right)\! h_{2}^{\zeta_{2}+1/2}\right) \|r_{2}\|_{H^{\tau}({{{\varGamma}}})}\|\mu_{1,h}\|_{L^{2}({{{\varGamma}}})}\\ &&\text{(by (18), (20), and (24))}\\ &\leq& C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right), \end{array} $$
where α and z have the same meaning as in (18);
-
denoting by \({{{\varPi }}}_{12}^{\ast }\) the adjoint operator of π12, by the fact that \(c=\|{{{\varPi }}}_{12}^{\ast }\|=\|{{{\varPi }}}_{12}\|\) and thanks to Lemma 5 of [16], we have
$$ \begin{array}{@{}rcl@{}} |\langle {{{\varPi}}}_{12}(\pi_{h_{2}}r_{2}-r_{2,h}),\mu_{1,h}\rangle|& =& |\langle \pi_{h_{2}}r_{2}-r_{2,h},{{{\varPi}}}_{12}^{*}\mu_{1,h}\rangle|\\ &\leq& c \|\pi_{h2}r_{2}-r_{2,h}\|_{H^{-1/2}({{{\varGamma}}})} \|\mu_{1,h}\|_{H^{1/2}({{{\varGamma}}})}. \end{array} $$
Now we apply the triangle inequality to \(\|\pi _{h2}r_{2}-r_{2,h}\|_{H^{-1/2}({{{\varGamma }}})}\):
$$ \|\pi_{h2}r_{2}-r_{2,h}\|_{H^{-1/2}({{{\varGamma}}})} \leq \|r_{2}-r_{2,h}\|_{H^{-1/2}({{{\varGamma}}})}+\|r_{2}- \pi_{h2}r_{2}\|_{H^{-1/2}({{{\varGamma}}})} $$
and by exploiting again the projection error [16, (115)], (20), (18) and (24), we can conclude that
$$ \begin{array}{@{}rcl@{}} |\langle {{{\varPi}}}_{12}(\pi_{h_{2}}r_{2}-r_{2,h}),\mu_{1,h}\rangle| &\leq& C \left( h_{2}^{\zeta_{2}+1/2}\|r_{2}\|_{H^{\tau}({{{\varGamma}}})}\right. \\ &&+ h_{1}^{1/2}\left( \alpha h_{1}^{\zeta_{1}+1/2}+\left( 1+\left( \frac{h_{1}}{h_{2}}\right)^{z}\right)h_{2}^{\zeta_{2}+1/2}\right) \|r_{2}\|_{H^{\tau}({{{\varGamma}}})} \\ &&\left. + \left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right) \|\mu_{1,h}\|_{H^{1/2}({{{\varGamma}}})}\right)\\ &\leq& C\left( h_{1}^{\ell_{1}-1}+h_{2}^{\ell_{2}-1}\right). \end{array} $$
Finally, by summing up all terms the thesis follows. □
The following theorem is an immediate consequence of Theorems 2 and 3.
Theorem 4
Set \(\ell =\min \limits \{\ell _{1},\ell _{2}\}\) and \(h=\max \limits \{h_{1},h_{2}\}\), under the assumptions of Theorem 2, the Internodes method is conservative up to order q = ℓ − 1, that is the order of the broken-norm error.
We can also formulate an upper bound for the forms Bk defined in (21):
Corollary 1
Under the assumptions of Theorem 2, it holds
$$ B_{k}(u_{k,h},1) = \mathcal{O}(h^{\ell-1})\quad \text{ and }\quad B_{k}(u_{k,h},\overline{u}_{k,h})= \mathcal{O}(h^{\ell-1})\qquad\text{ for } k=1,2. $$