Skip to main content

Graded Components of Local Cohomology Modules II


Let A be a commutative Noetherian ring containing a field of characteristic zero. Let R = A[X1,…,Xm] be a polynomial ring and Am(A) = AX1,…,Xm, 1,…,m〉 be the m th Weyl algebra over A, where i = /Xi. Consider standard gradings on R and Am(A) by setting \(\deg z=0\) for all zA, \(\deg X_{i}=1\), and \(\deg \partial _{i} =-1\) for i = 1,…,m. We present a few results about the behavior of the graded components of local cohomology modules \({H_{I}^{i}}(R)\), where I is an arbitrary homogeneous ideal in R. We mostly restrict our attention to the vanishing, tameness, and rigidity properties. To obtain this, we use the theory of D-modules and show that generalized Eulerian Am(A)-modules exhibit these properties. As a corollary, we further get that components of graded local cohomology modules with respect to a pair of ideals display similar behavior.

This is a preview of subscription content, access via your institution.


  1. Björk, J.-E.: Rings of Differential Operators, vol. 21. North-Holland Publishing Co, Amsterdam, New York (1979)

    Google Scholar 

  2. Brenner, H.: Grothendieck topologies and ideal closure operations. arXiv:math/0612471 (2006)

  3. Brodmann, M.: Asymptotic behaviour of cohomology: tameness, supports and associated primes. In: Ghorpade, S., Srinivasan, H., Verma, J (eds.) Commutative Algebra and Algebraic Geometry. Contemporary Mathematics, vol. 390, pp 31–61. American Mathematical Society, Providence, RI (2005)

  4. Brodmann, M., Hellus, M.: Cohomological patterns of coherent sheaves over projective schemes. J. Pure Appl. Algebra 172, 165–182 (2002)

    MathSciNet  Article  Google Scholar 

  5. Brodmann, M., Sharp, R.Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics, vol. 60. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  6. Bruns, W., Herzog, H.J.: Cohen-macaulay rings. vol. 39, Cambridge university press (1998)

  7. Chardin, M., Jouanolou, J.-P., Rahimi, A.: The eventual stability of depth, associated primes and cohomology of a graded module. J. Commut. Algebra 5, 63–92 (2013)

    MathSciNet  Article  Google Scholar 

  8. Clark, P.L.: Covering numbers in linear algebra. Am. Math. Mon. 119, 65–67 (2012)

    MathSciNet  Article  Google Scholar 

  9. Cutkosky, S.D., Herzog, J.: Failure of tameness for local cohomology. J. Pure Appl. Algebra 211, 428–432 (2007)

    MathSciNet  Article  Google Scholar 

  10. Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9, 145–164 (1970)

    MathSciNet  Article  Google Scholar 

  11. Iyengar, S.B., Leuschke, G.J., Leykin, A., Miller, C., Miller, E., Singh, A.K., Walther, U.: Twenty-Four Hours of Local Cohomology. Graduate Studies in Mathematics, vol. 87. American Mathematical Society, Providence, RI (2011)

  12. Lim, C.S.: Tameness of graded local cohomology modules for dimension R0 = 2, the Cohen-Macaulay case. Menumi Math. 26, 11–21 (2004)

    MATH  Google Scholar 

  13. Lima, P.H., Jorge Pérez, V.H.: Graded version of local cohomology with respect to a pair of ideals. J. Commut. Algebra 9, 545–561 (2017)

    MathSciNet  Article  Google Scholar 

  14. Lyubeznik, G.: F-modules: applications to local cohomology and D-modules in characteristic p > 0. J. Reine Angew. Math. 491, 65–130 (1997)

    MathSciNet  Article  Google Scholar 

  15. Ma, L., Zhang, W.: Eulerian graded \(\mathcal {D}\)-modules. Math. Res. Lett. 21, 149–167 (2014)

    MathSciNet  Article  Google Scholar 

  16. McConnell, J.C.: Localization in enveloping rings. J. Lond. Math. Soc. s1-43, 421–428 (1968)

    Article  Google Scholar 

  17. Puthenpurakal, T.J.: de Rham cohomology of local cohomology modules. In: Rizvi, S.T., Ali, A., De Filippis, V (eds.) Algebra and its Applications. Springer Proceedings in Mathematics & Statistics, vol. 174, pp 159–181. Springer, Singapore (2016)

  18. Puthenpurakal, T.J.: de Rham cohomology of local cohomology modules: The graded case. Nagoya Math. J. 217, 1–21 (2015)

    MathSciNet  Article  Google Scholar 

  19. Puthenpurakal, T.J.: Associated primes of local cohomology modules over regular rings. Pac. J. Math. 282, 233–255 (2016)

    MathSciNet  Article  Google Scholar 

  20. Puthenpurakal, T.J.: Graded components of local cohomology modules. Collect. Math. 73, 135–171 (2022)

    MathSciNet  Article  Google Scholar 

  21. Puthenpurakal, T.J., Singh, J.: On derived functors of graded local cohomology modules. Math. Proc. Camb. Philos. Soc. 167, 549–565 (2019)

    MathSciNet  Article  Google Scholar 

  22. Rotthaus, C., Şega, L.M.: Some properties of graded local cohomology modules. J. Algebra 283, 232–247 (2005)

    MathSciNet  Article  Google Scholar 

  23. Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra 213, 582–600 (2009)

    MathSciNet  Article  Google Scholar 

  24. Walther, U.: Algorithmic computation of local cohomology modules and the local cohomological dimension of algebraic varieties. J. Pure Appl. Algebra 139, 303–321 (1999)

    MathSciNet  Article  Google Scholar 

Download references


The first author thanks SERB, Department of Science and Technology, Government of India, for the project grant MATRICS (Project No. MTR/2017/000585). We thank the referee for a careful reading and many pertinent remarks.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tony J. Puthenpurakal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Puthenpurakal, T.J., Roy, S. Graded Components of Local Cohomology Modules II. Vietnam J. Math. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Local comohology
  • Graded local cohomology
  • Weyl algebra
  • Generalized Eulerian modules

Mathematics Subject Classification (2010)

  • Primary 13D45
  • 14B15
  • Secondary 13N10
  • 32C36