Björk, J.-E.: Rings of Differential Operators, vol. 21. North-Holland Publishing Co, Amsterdam, New York (1979)
Google Scholar
Brenner, H.: Grothendieck topologies and ideal closure operations. arXiv:math/0612471 (2006)
Brodmann, M.: Asymptotic behaviour of cohomology: tameness, supports and associated primes. In: Ghorpade, S., Srinivasan, H., Verma, J (eds.) Commutative Algebra and Algebraic Geometry. Contemporary Mathematics, vol. 390, pp 31–61. American Mathematical Society, Providence, RI (2005)
Brodmann, M., Hellus, M.: Cohomological patterns of coherent sheaves over projective schemes. J. Pure Appl. Algebra 172, 165–182 (2002)
MathSciNet
Article
Google Scholar
Brodmann, M., Sharp, R.Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics, vol. 60. Cambridge University Press, Cambridge (2013)
Google Scholar
Bruns, W., Herzog, H.J.: Cohen-macaulay rings. vol. 39, Cambridge university press (1998)
Chardin, M., Jouanolou, J.-P., Rahimi, A.: The eventual stability of depth, associated primes and cohomology of a graded module. J. Commut. Algebra 5, 63–92 (2013)
MathSciNet
Article
Google Scholar
Clark, P.L.: Covering numbers in linear algebra. Am. Math. Mon. 119, 65–67 (2012)
MathSciNet
Article
Google Scholar
Cutkosky, S.D., Herzog, J.: Failure of tameness for local cohomology. J. Pure Appl. Algebra 211, 428–432 (2007)
MathSciNet
Article
Google Scholar
Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9, 145–164 (1970)
MathSciNet
Article
Google Scholar
Iyengar, S.B., Leuschke, G.J., Leykin, A., Miller, C., Miller, E., Singh, A.K., Walther, U.: Twenty-Four Hours of Local Cohomology. Graduate Studies in Mathematics, vol. 87. American Mathematical Society, Providence, RI (2011)
Lim, C.S.: Tameness of graded local cohomology modules for dimension R0 = 2, the Cohen-Macaulay case. Menumi Math. 26, 11–21 (2004)
MATH
Google Scholar
Lima, P.H., Jorge Pérez, V.H.: Graded version of local cohomology with respect to a pair of ideals. J. Commut. Algebra 9, 545–561 (2017)
MathSciNet
Article
Google Scholar
Lyubeznik, G.: F-modules: applications to local cohomology and D-modules in characteristic p > 0. J. Reine Angew. Math. 491, 65–130 (1997)
MathSciNet
Article
Google Scholar
Ma, L., Zhang, W.: Eulerian graded \(\mathcal {D}\)-modules. Math. Res. Lett. 21, 149–167 (2014)
MathSciNet
Article
Google Scholar
McConnell, J.C.: Localization in enveloping rings. J. Lond. Math. Soc. s1-43, 421–428 (1968)
Article
Google Scholar
Puthenpurakal, T.J.: de Rham cohomology of local cohomology modules. In: Rizvi, S.T., Ali, A., De Filippis, V (eds.) Algebra and its Applications. Springer Proceedings in Mathematics & Statistics, vol. 174, pp 159–181. Springer, Singapore (2016)
Puthenpurakal, T.J.: de Rham cohomology of local cohomology modules: The graded case. Nagoya Math. J. 217, 1–21 (2015)
MathSciNet
Article
Google Scholar
Puthenpurakal, T.J.: Associated primes of local cohomology modules over regular rings. Pac. J. Math. 282, 233–255 (2016)
MathSciNet
Article
Google Scholar
Puthenpurakal, T.J.: Graded components of local cohomology modules. Collect. Math. 73, 135–171 (2022)
MathSciNet
Article
Google Scholar
Puthenpurakal, T.J., Singh, J.: On derived functors of graded local cohomology modules. Math. Proc. Camb. Philos. Soc. 167, 549–565 (2019)
MathSciNet
Article
Google Scholar
Rotthaus, C., Şega, L.M.: Some properties of graded local cohomology modules. J. Algebra 283, 232–247 (2005)
MathSciNet
Article
Google Scholar
Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra 213, 582–600 (2009)
MathSciNet
Article
Google Scholar
Walther, U.: Algorithmic computation of local cohomology modules and the local cohomological dimension of algebraic varieties. J. Pure Appl. Algebra 139, 303–321 (1999)
MathSciNet
Article
Google Scholar