Skip to main content
Log in

Existence of Concave Positive Solutions for Nonlinear Fractional Differential Equation with p-Laplacian Operator

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, we investigate the existence and multiplicity of concave positive solutions for a boundary value problem for two-sided fractional differential equations involving the Caputo derivative. By means of the Leggett–Williams fixed point theorem, we obtain the existence of at least three solutions. Some illustrative examples are given in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin (2018)

    Book  MATH  Google Scholar 

  2. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  3. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015)

    MATH  Google Scholar 

  4. Abbas, S., Benchohra, M., N’Guérékata, G.M., Slimani, B.A.: Darboux problem for fractional-order discontinuous hyperbolic partial differential equations in Banach algebras. Complex Var. Elliptic Equ. 57, 337–350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adams, C.R.: On the linear ordinary q-difference equation. Ann. Math. 30, 195–205 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ahmad, B.: Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 2011, 94 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Boutiara, A., Benbachir, M., Guerbati, K.: Caputo type fractional differential equation with nonlocal erdélyi-kober type integral boundary conditions in Banach spaces. Surv. Math. Appl. 15, 399–418 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Boutiara, A., Guerbati, K., Benbachir, M.: Caputo-hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 5, 259–272 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Chai, G.: Positive solutions for boundary value problems of fractional differential equation with p-Laplacian operator. Bound. Value Probl. 2012, 18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

    Google Scholar 

  12. Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673–688 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liang, R., Peng, J., Shen, J.: Double positive solutions for a nonlinear four-point boundary value problem with a p-Laplacian operator. Nonlinear Anal. 68, 1881–1889 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993)

    MATH  Google Scholar 

  15. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  16. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  18. Su, H.: Positive solutions for n-order m-point p-Laplacian operator singular boundary value problem. Appl. Math. Comput. 199, 122–132 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Su, H., Wei, Z., Wang, B.: The existence of positive solutions for a nonlinear four-point singular boundary value problem with a p-Laplacian operator. Nonlinear Anal. 66, 2204–2217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tang, X., Yan, C., Liu, Q.: Existence of solutions of two-point boundary value problems for fractional p-Laplace differential equations at resonance. J. Appl. Math. Comput. 41, 119–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Torres, F.: Positive solutions for a mixed-order three-point boundary value problem for p-Laplacian. Abstr. Appl. Anal. 2013, 912576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, D., Wang, H., Ge, W.: Existence of triple positive solutions to a class of p-Laplacian boundary value problems. J. Math. Anal. Appl. 328, 972–983 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaston N’Guérékata.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabane, F., Abbas, S., Benbachir, M. et al. Existence of Concave Positive Solutions for Nonlinear Fractional Differential Equation with p-Laplacian Operator. Vietnam J. Math. 51, 505–543 (2023). https://doi.org/10.1007/s10013-022-00552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-022-00552-9

Keywords

Mathematics Subject Classification (2010)

Navigation