Skip to main content

The Existence of Minimal Logarithmic Signatures for Some Finite Simple Unitary Groups


The MLS conjecture states that every finite simple group has a minimal logarithmic signature. The aim of this paper is proving the existence of a minimal logarithmic signature for some simple unitary groups PSUn(q). We report a gap in the proof of the main result of Hong et al. (Des. Codes Cryptogr. 77: 179–191, 2015) and present a new proof in some special cases of this result. As a consequence, the MLS conjecture is still open.

This is a preview of subscription content, access via your institution.


  1. Babai, L., Pálfy, P.P., Saxl, J.: On the number of p-regular elements in finite simple groups. LMS J. Comput. Math. 12, 82–119 (2009)

    MathSciNet  Article  Google Scholar 

  2. Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996)

    Google Scholar 

  3. Fang, X.G., Havas, G., Wang, J.: A family of non-quasiprimitive graphs admitting a quasiprimitive 2-arc transitive group action. Eur. J. Combin. 20, 551–557 (1999)

    MathSciNet  Article  Google Scholar 

  4. González Vasco, M.I., Rötteler, M., Steinwandt, R.: On minimal length factorizations of finite groups. Exp. Math. 12, 1–12 (2003)

    MathSciNet  Article  Google Scholar 

  5. González Vasco, M.I., Steinwandt, R.: Obstacles in two public key cryptosystems based on group factorizations. Tatra Mt. Math. Publ. 25, 23–37 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Hartley, R.W.: Determination of the ternary collineation groups whose coefficients lie in the GF(2n). Ann. Math. 2nd Ser. 27, 140–158 (1925)

    Article  Google Scholar 

  7. Hestenes, M.D.: Singer groups. Can. J. Math. 22, 492–513 (1970)

    MathSciNet  Article  Google Scholar 

  8. Holmes, P.E.: On minimal factorisations of sporadic groups. Exp. Math. 13, 435–440 (2004)

    MathSciNet  Article  Google Scholar 

  9. Hong, H., Wang, L., Yang, Y., Ahmad, H.: All exceptional groups of Lie type have minimal logarithmic signatures. Appl. Algebra Eng. Commun. Comput. 25, 287–296 (2014)

    MathSciNet  Article  Google Scholar 

  10. Hong, H., Wang, L., Yang, Y.: Minimal logarithmic signatures for the unitary group Un(q). Des. Codes Cryptogr. 77, 179–191 (2015)

    MathSciNet  Article  Google Scholar 

  11. Huppert, B.: Singer-Zyklen in klassischen Gruppen. Math. Z. 117, 141–150 (1970)

    MathSciNet  Article  Google Scholar 

  12. Huppert, B.: Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften, vol. 134. Springer, Berlin (1967)

    Google Scholar 

  13. Lempken, W., van Trung, T.: On minimal logarithmic signatures of finite groups. Exp. Math. 14, 257–269 (2005)

    MathSciNet  Article  Google Scholar 

  14. Lempken, W., van Trung, T., Magliveras, S.S., Wei, W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)

    MathSciNet  Article  Google Scholar 

  15. Li, C.H., Xia, B.: Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups. arXiv:1408.0350v3 (2016)

  16. Liebeck, M.W., Praeger, C.E., Saxl, J.: The Maximal Factorizations of the Finite Simple Groups and Their Automorphism Groups. Memoirs of the American Mathematical Society, vol. 86(432). American Mathematical Society, Providence (1990)

    Google Scholar 

  17. Magliveras, S.S., Oberg, B.A., Surkan, A.J.: A new random number generator from permutation groups. Rend. Seminario Mat. di Milano 54, 203 (1985)

    MathSciNet  Article  Google Scholar 

  18. Magliveras, S.S.: A cryptosystem from logarithmic signatures of finite groups. In: Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp 972–975. Elsevier Publishing Company, Amsterdam (1986)

  19. Magliveras, S.S., Memon, N.D.: Properties of cryptosystem PGM. In: Brassard, G. (ed.) Advances in Cryptology—CRYPTO’ 89 Proceedings. Lecture Notes in Computer Science, vol. 435, pp 447–460. Springer, Berlin (1990)

  20. Magliveras, S.S., Memon, N.D.: Complexity tests for cryptosystem PGM. Congr. Numer. 79, 61–68 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Magliveras, S.S., Memon, N.D.: Algebraic properties of cryptosystem PGM. J. Cryptol. 5, 167–183 (1992)

    MathSciNet  Article  Google Scholar 

  22. Magliveras, S.S., Stinson, D.R., van Trung, T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 285–297 (2002)

    MathSciNet  Article  Google Scholar 

  23. Mazurov, V.D.: Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups. Algebra Logic 32, 142–153 (1993)

    MathSciNet  Article  Google Scholar 

  24. Mitchell, H.H.: Determination of the ordinary and modular ternary linear groups. Trans. Amer. Math. Soc. 12, 207–242 (1911)

    MathSciNet  Article  Google Scholar 

  25. Rahimipour, A.R., Ashrafi, A.R., Gholami, A.: The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups. Cryptogr. Commun. 7, 535–542 (2015)

    MathSciNet  Article  Google Scholar 

  26. Rahimipour, A.R., Ashrafi, A.R., Gholami, A.: The existence of minimal logarithmic signatures for some finite simple groups. Exp. Math. 27, 138–146 (2018)

    MathSciNet  Article  Google Scholar 

  27. Singhi, N., Singhi, N.: Minimal logarithmic signatures for classical groups. Des. Codes Cryptogr. 60, 183–195 (2011)

    MathSciNet  Article  Google Scholar 

  28. Singhi, N., Singhi, N., Magliveras, S.: Minimal logarithmic signatures for finite groups of Lie type. Des. Codes Cryptogr. 55, 243–260 (2010)

    MathSciNet  Article  Google Scholar 

  29. Suzuki, M.: A characterization of the 3-dimensional projective unitary group over a finite field of odd characteristic. J. Algebra 2, 1–14 (1965)

    MathSciNet  Article  Google Scholar 

  30. Svaba, P., van Trung, T., Wolf, P.: Logarithmic signatures for abelian groups and their factorization. Tatra Mt. Math. Publ. 57, 21–33 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Wilson, R.A.: The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251. Springer, London (2009)

    Book  Google Scholar 

Download references


We are indebted to two anonymous referees for their suggestions and helpful remarks led us to improve this paper. The research of the authors is partially supported by INSF under grant number 93010006.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ali Reza Ashrafi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahimipour, A.R., Ashrafi, A.R. The Existence of Minimal Logarithmic Signatures for Some Finite Simple Unitary Groups. Vietnam J. Math. 50, 217–227 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Minimal logarithmic signature
  • Simple unitary group
  • Cryptosystem

Mathematics Subject Classification (2010)

  • 20D08
  • 94A60