Skip to main content

Jacobian Conjecture as a Problem on Integral Points on Affine Curves

Abstract

It is shown that the Jacobian conjecture over number fields may be considered as an existence problem of integral points on affine curves. More specially, if the Jacobian conjecture over \(\mathbb {C}\) is false, then for some n ≫ 1 there exists a counterexample \(F\in \mathbb {Z}[X]^{n}\) of the form \(F_{i}(X)=X_{i}+ (a_{i1}X_{1}+\cdots +a_{in}X_{n})^{d_{i}}\), \(a_{ij}\in \mathbb {Z}\), di = 2;3, \(i,j=1,\dots ,n\), such that the affine curve F1(X) = F2(X) = ⋯ = Fn(X) has no non-zero integer points.

This is a preview of subscription content, access via your institution.

References

  1. Bass, H., Connell, E., Wright, D.: The Jacobian conjecture: Reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. (N.S.) 7, 287–330 (1982)

    Article  MathSciNet  Google Scholar 

  2. Connell, E., van den Dries, L.: Injective polynomial maps and the Jacobian conjecture. J. Pure Appl. Algebra 28, 235–239 (1983)

    Article  MathSciNet  Google Scholar 

  3. Drużkowski, L.M.: An effective approach to Keller’s Jacobian conjecture. Math. Ann. 264, 303–313 (1983)

    Article  MathSciNet  Google Scholar 

  4. van den Essen, A.: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics, vol. 190. Birkhäuser, Basel (2000)

    MATH  Google Scholar 

  5. Jelonek, Z.: Testing sets for properness of polynomial mappings. Math. Ann. 315, 1–35 (1999)

    Article  MathSciNet  Google Scholar 

  6. Jelonek, Z.: Topological characterization of finite mappings. Bull. Pol. Acad. Sci. Math. 49, 279–283 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Keller, O.-H.: Ganze Cremona-Transformatione. Monatsh. Math. Phys. 47, 299–306 (1939)

    Article  MathSciNet  Google Scholar 

  8. Krasiński, T., Spodzieja, S.: On the irreducibility of fibers of complex polynomial mappings. Univ. Iagel. Acta Math, Fasc. XXXIX, 167–178 (2001)

    MATH  Google Scholar 

  9. McKenna, K., van den Dries, L.: Surjective polynomial maps, and a remark on the Jacobian problem. Manuscripta Math. 67, 1–15 (1990)

    Article  MathSciNet  Google Scholar 

  10. Siegel, C.L.: Über einige Anwendungen diophantischer Approximationen. Abh. Preuss Akad. Wiss. Phys.-Math. Kl., Nr. 1; Ges. Abh. Band 1, 209–266 (1929)

    MATH  Google Scholar 

  11. Varchenko, A.N.: Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings. Izv. Akad. Nauk SSSR Ser. Mat. 6, 949–1008 (1972)

    MathSciNet  Google Scholar 

  12. Verdier, J.-L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math. 36, 295–312 (1976)

    Article  MathSciNet  Google Scholar 

  13. Yagzhev, A.V.: On Keller’s problem (in Russian). Sibirsk. Mat. Zh. 21, 141–150 (1980)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author was partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2019.316, and Vietnam Institute for Advanced Study in Mathematics (VIASM).

The author wishes to express his thank to the professors Arno van den Essen, Ha Huy Vui and Ludwick. M. Drużkowski for some valuable discussions. The author would like to thank the Vietnam Institute for Advanced Study in Mathematics for their helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chau Van Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, C. Jacobian Conjecture as a Problem on Integral Points on Affine Curves. Vietnam J. Math. 50, 195–204 (2022). https://doi.org/10.1007/s10013-021-00488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-021-00488-6

Keywords

Mathematics Subject Classification (2010)