Skip to main content

Hom-Lie Algebras with a Set Grading

Abstract

In this paper we study the regular Hom-Lie algebra \({\mathscr{L}}\) graded by an arbitrary set \(\mathcal {S}\) (set grading). We show that \({\mathscr{L}}\) decomposes as \({\mathscr{L}}=\mathcal {U}\oplus {\sum }_{[\lambda ]\in ({\varLambda }_{\mathcal {S}}\setminus \{0\})/\sim }{\mathscr{L}}_{[\lambda ]}\), where \(\mathcal {U}\) is a linear complement of \({\sum }_{[\lambda ]\in ({\varLambda }_{\mathcal {S}}\setminus \{0\})/\sim }{\mathscr{L}}_{0,[\lambda ]}\) in \({\mathscr{L}}_{0}\) and any \({\mathscr{L}}_{[\lambda ]}\) a well-described graded ideals of \({\mathscr{L}}\), satisfying \([{\mathscr{L}}_{[\lambda ]}, {\mathscr{L}}_{[\mu ]}]=0\) if [λ]≠[μ]. Under certain conditions, the simplicity of \({\mathscr{L}}\) is characterized and it is shown that the above decomposition is actually the direct sum of the family of its minimal graded ideals, each one being a simple set-graded regular Hom-Lie algebras.

This is a preview of subscription content, access via your institution.

References

  1. Aragón Periñán, M.J., Calderón Martín, A.J.: The structure of split regular Hom-Poisson algebras. Colloq. Math. 145, 1–13 (2016)

    MathSciNet  Article  Google Scholar 

  2. Aragón Periñán, M.J., Calderón Martín, A.J.: Split regular Hom-Lie algebras. J. Lie Theory 25, 875–888 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Aragón Periñán, M.J., Calderón Martín, A.J.: On graded matrix Hom-algebras. Electron. J. Linear Algebra 24, 45–65 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Benayadi, S., Makhlouf, A.: Hom-lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 79, 38–60 (2014)

    MathSciNet  Article  Google Scholar 

  5. Bahturin, Y.A., Shestakov, I.P., Zaicev, M.V.: Gradings on simple Jordan and Lie algebras. J. Algebra 283, 849–868 (2005)

    MathSciNet  Article  Google Scholar 

  6. Bahturin, Y.A., Tvalavadze, M.V.: Group gradings on g2. Commun. Algebra 37, 885–893 (2009)

    Article  Google Scholar 

  7. Calderón Martín, A.J.: On the structure of graded Lie algebras. J. Math. Phys. 50, 103513 (2009)

    MathSciNet  Article  Google Scholar 

  8. Calderón Martín, A.J.: Lie algebras with a set grading. Linear Algebra Appl. 452, 7–20 (2014)

    MathSciNet  Article  Google Scholar 

  9. Calderón Martín, A.J.: On split Lie algebras with symmetric root systems. Proc. Indian Acad. Sci. (Math. Sci.) 118, 351–356 (2008)

    MathSciNet  Article  Google Scholar 

  10. Calderón Martín, A.J., Sánchez Delgado, J.M.: On split Leibniz algebras. Linear Algebra Appl. 436, 1651–1663 (2012)

    MathSciNet  Article  Google Scholar 

  11. Calderón Martín, A.J., Sánchez Delgado, J.M.: On the structure of graded Lie superalgebras. Modern Phys. Lett. A 27, 1250142 (2012)

    MathSciNet  Article  Google Scholar 

  12. Calderón Martín, A.J., Sánchez Delgado, J.M.: On the structure of split Lie color algebras. Linear Algebra Appl. 436, 307–315 (2012)

    MathSciNet  Article  Google Scholar 

  13. Cheng, Y.-s., Su, Y.: Quantum deformations of the Heisenberg-Virasoro algebra. Algebra Colloq. 20, 299–308 (2013)

    MathSciNet  Article  Google Scholar 

  14. Draper, C.: Models on the Lie algebra f4. Linear Algebra Appl. 428, 2813–2839 (2008)

    MathSciNet  Article  Google Scholar 

  15. Draper, C., Martín, C.: Gradings on the Albert algebra and on f4. Rev. Mat. Iberoam. 418, 841–908 (2009)

    MATH  Google Scholar 

  16. Elduque, A.: Fine gradings on simple classical Lie algebras. J. Algebra 324, 3532–3571 (2010)

    MathSciNet  Article  Google Scholar 

  17. Elduque, A., Kochetov, M.: Gradings on Simple Lie Algebras. Mathematical Surveys and Monographs, vol. 189. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  18. Fujitsu, A.: Free field representation of the N = 3 superconformal algebra from Hamiltonian reduction of osp(3/2) affine Lie superalgebra. Modern Phys. Lett. A 8, 1763–1777 (1993)

    MathSciNet  Article  Google Scholar 

  19. Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using σ-derivations. J. Algebra 295, 314–361 (2006)

    MathSciNet  Article  Google Scholar 

  20. Jin, Q., Li, X.: Hom-lie algebra structures on semi-simple Lie algebras. J. Algebra 319, 1398–1408 (2008)

    MathSciNet  Article  Google Scholar 

  21. Kochetov, M.: Gradings on finite-dimensional simple Lie algebras. Acta Appl. Math. 108, 101–127 (2009)

    MathSciNet  Article  Google Scholar 

  22. Khalili, V.: Lie superalgebras with a set grading. J Algebra Appl. https://doi.org/10.1142/S0219498821500286 (2021)

  23. Li, X.: Representations of 3-dimensional multiplicative Hom-Lie algebras. Adv. Math. Phys. 2013, 938901 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Patera, J., Zassenhaus, H.: On Lie gradings I. Linear Algebra App. 112, 57–159 (1989)

    MathSciNet  Article  Google Scholar 

  25. Sheng, Y.: Representations of Hom-Lie algebras. Algebr. Represent. Theory 15, 1081–1098 (2012)

    MathSciNet  Article  Google Scholar 

  26. Yau, D.: Hom-algebras and homology. J. Lie Theory 19, 409–421 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valiollah Khalili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalili, V. Hom-Lie Algebras with a Set Grading. Vietnam J. Math. 50, 111–124 (2022). https://doi.org/10.1007/s10013-021-00480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-021-00480-0

Keywords

  • Hom-Lie algebras
  • Set-grade Lie algebras
  • Structure theory

Mathematics Subject Classification (2010)

  • 17B40
  • 17B55
  • 17B75