Complementary Problems with Polynomial Data


Given polynomial maps \(f, g \colon \mathbb {R}^{n} \to \mathbb {R}^{n}\), we consider the polynomial complementary problem of finding a vector \(x \in \mathbb {R}^{n}\) such that

$$ f(x) \ge 0, \quad g(x) \ge 0, \quad \text{ and } \quad \langle f(x), g(x) \rangle = 0. $$

In this paper, we present various properties on the solution set of the problem, including genericity, nonemptiness, compactness, uniqueness as well as error bounds with explicit exponents. These strengthen and generalize some previously known results.

This is a preview of subscription content, access via your institution.


  1. 1.

    We would like to thank Hongjin He for showing us this reference.

  2. 2.

    A multifunction is polyhedral if its graph is the union of finitely many polyhedral convex sets.


  1. 1.

    Bai, X.-L., Huang, Z.-H., Wong, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bailynicki-Birula, A., Rosenlicht, M.: Injective morphisms of real algebraic varieties. Proc. Amer. Math. Soc. 13, 200–203 (1962)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Benedetti, R., Risler, J.-J.: Real Algebraic and Semi-Algebraic Sets. Actualités Mathésmatiques. Hermann, Paris (1990)

    Google Scholar 

  4. 4.

    Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. A Series of Modern Surveys in Mathematics, vol. 36. Springer, Berlin (1998)

    Google Scholar 

  5. 5.

    Cottle, R.W., Pang, J.-S., Stone, R.: The Linear Complementarity Problem. SIAM, Philadelphia, PA (2009)

    Google Scholar 

  6. 6.

    D’Acunto, D., Kurdyka, K.: Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials. Ann. Pol. Math. 87, 51–61 (2005)

    Article  Google Scholar 

  7. 7.

    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problem, vol. I, II. Springer, New York (2003)

    Google Scholar 

  8. 8.

    Fan, J., Nie, J., Zhou, A.: Tensor eigenvalue complementarity problems. Math. Program. Ser. A 170, 507–539 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gowda, M.S.: An analysis of zero set and global error bound properties of a piecewise affine function via its recession function. SIAM J. Matrix Anal. Appl. 17, 594–609 (1996)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13, 227–241 (2017)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Gowda, M.S., Sossa, D.: Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones. Math. Program. Ser. A 177, 149–171 (2019)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hà, H.-V., Phạm, T.-S.: Genericity in Polynomial Optimization. Series on Optimization and its Applications, vol. 3. World Scientific Publishing, Singapore (2017)

    Google Scholar 

  13. 13.

    Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Hu, S., Wang, J., Huang, Z.-H.: Error bounds for the solution sets of quadratic complementarity problems. J. Optim. Theory Appl. 179, 983–1000 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Karamardian, S.: The complementarity problem. Math. Program. 2, 107–129 (1972)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Karamardian, S.: An existence theorem for the complementarity problem. J. Optim. Theory Appl. 19, 227–232 (1976)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Li, G., Mordukhovich, B.S., Phạm, T.S.: New fractional error bounds for polynomial systems with applications to Höderian stability in optimization and spectral theory of tensors. Math. Program. Ser. A. 153, 333–362 (2015)

    Article  Google Scholar 

  18. 18.

    Ling, L., Ling, C., He, H.: Properties of the solution set of generalized polynomial complementarity problems. Pac. J. Optim. 16, 155–174 (2020)

    MathSciNet  Google Scholar 

  19. 19.

    Lloyd, N.G.: Degree Theory. Cambridge University Press, London (1978)

    Google Scholar 

  20. 20.

    Luo, Z.-Q., Mangasarian, O.L., Ren, J., Solodov, M.V.: New error bounds for the linear complementarity problem. Math. Oper. Res. 19, 880–892 (1994)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Luo, Z.-Q., Tseng, P.: Error bound and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM J. Optim. 2, 43–54 (1992)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Mangasarian, O.L., Ren, J.: New improved error bounds for the linear complementarity problem. Math. Program. Ser. A 66, 241–255 (1994)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Moré, J.J., Rheinboldt, W.C.: On P- and S-functions and related classes of n-dimensional nonlinear mappings. Linear Algebra Appl. 6, 45–68 (1973)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and their Applications. Advances in Mechanics and Mathematics, vol. 39. Springer, Singapore (2018)

    Google Scholar 

  25. 25.

    Robinson, S.M.: Some continuity properties of polyhedral multifunctions. In: König, H., Korte, B., Ritter, K (eds.) Mathematical Programming at Oberwolfach. Mathematical Programming Studies, vol. 14, pp 206–214. Springer, Berlin (1981)

  26. 26.

    Saigal, R., Simon, C.: Generic properties of the complementarity problem. Math. Program. 4, 324–335 (1973)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Wang, J., Hu, S., Huang, Z.-H.: Solution sets of quadratic complementarity problems. J. Optim. Theory Appl. 176, 120–136 (2018)

    MathSciNet  Article  Google Scholar 

Download references


The first author is partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant 101.04-2019.302

The authors are grateful to three anonymous referees for careful reading of the original submission and for helpful suggestions and kind remarks.

Author information



Corresponding author

Correspondence to Tien-Son Pham.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor Boris Mordukhovich on the occasion of his 70th birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham, TS., Nguyen, C.H. Complementary Problems with Polynomial Data. Vietnam J. Math. (2021).

Download citation


  • Polynomial complementarity problem
  • Existence
  • Boundedness
  • Uniqueness
  • Error bound
  • Genericity

Mathematics Subject Classification (2010)

  • 90C33