Skip to main content
Log in

Čech (Co-) Complexes as Koszul Complexes and Applications

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the main results of the paper it is shown that the Čech (co-) homology might be considered as an appropriate Koszul (co-) homology. Let \(\check {C}_{\underline {x}}\) denote the Čech complex with respect to a system of elements \(\underline {x} = x_{1},\ldots ,x_{r}\) of a commutative ring R. We construct a bounded complex \({\mathscr{L}}_{\underline {x}}\) of free R-modules and a quasi-isomorphism \({\mathscr{L}}_{\underline {x}} \overset {\sim }{\longrightarrow } \check {C}_{\underline {x}}\) and isomorphisms \({\mathscr{L}}_{\underline {x}} \otimes _{R} X \cong K^{\bullet }(\underline {x}-\underline {U}; X[\underline {U}^{-1}])\) and \(\text {Hom}_{R}({\mathscr{L}}_{\underline {x}},X) \cong K_{\bullet }(\underline {x}-\underline {U};X[[\underline {U}]])\) for an R-complex X. Here \(\underline {x} - \underline {U}\) denotes the sequence of elements x1U1,…,xrUr in the polynomial ring \(R[\underline {U}] = R[U_{1},\ldots ,U_{r}]\) in the variables \(\underline {U}= U_{1},\ldots ,U_{r}\) over R. Moreover \(X[[\underline {U}]]\) denotes the formal power series complex of X in \(\underline {U}\) and \(X[\underline {U}^{-1}]\) denotes the complex of inverse polynomials of X in \(\underline {U}\). Furthermore \(K_{\bullet }(\underline {x}-\underline {U};X[[\underline {U}]])\) resp. \(K^{\bullet }(\underline {x}-\underline {U}; X[\underline {U}^{-1}])\) denotes the corresponding Koszul complex resp. the corresponding Koszul co-complex. In particular, there is a bounded R-free resolution of \(\check {C}_{\underline {x}}\) by a certain Koszul complex. This has various consequences e.g. in the case when \(\underline {x}\) is a weakly proregular sequence. Under this additional assumption it follows that the local cohomology \(H^{i}_{\underline {x} R}(X)\) and the left derived functors of the completion \({\Lambda }_{i}^{\underline {x} R}(X), i \in \mathbb {Z},\) are a certain Koszul cohomology and Koszul homology resp. This provides new approaches to the right derived functor of torsion and the left derived functor of completion with various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso Tarrío, L., Jeremías López, A., Lipman, J.: Local homology and cohomology on schemes. Ann. Sci. Éc. Norm. Supér. (4) 30, 1–39 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)

    Article  MathSciNet  Google Scholar 

  3. Brodmann, M., Sharp, R.: Local Cohomology: An Algebraic Introduction with Geometric Applications, 2nd ed. Cambridge University Press, Cambridge (2012)

  4. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Rev. Ed. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  5. Greenlees, J., May, J.: Derived functors of I-adic completion and local homology. J. Algebra 149, 438–453 (1992)

    Article  MathSciNet  Google Scholar 

  6. Grothendieck, A.: Séminaire De Géométrie Algébrique par Alexander Grothendieck 1962. Cohomologie Locale Des Faisceaux Cohérents et Théorémes de Lefschetz Locaux Et Globaux. Fasc. I. Exposés I á VIII; Fasc. II. Exposés IX á XIII. 3ieme édition, corrigée. Institut des Hautes Études Scientifiques, Bures-Sur-Yvette (Essonne) (1962)

    MATH  Google Scholar 

  7. Hartshorne, R.: Local Cohomology. A Seminar Given by A. Grothendieck, Harvard University, Fall 1961. Lecture Notes in Mathematics, vol. 41. Springer, Berlin (1967)

    Google Scholar 

  8. Macaulay, F.: The Algebraic Theory of Modular Systems. With a New Introduction by Paul Roberts. Reprint of the 1916 Orig. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  9. Northcott, D. G.: Injective envelopes and inverse polynomials. J. Lond. Math. Soc. Ser. II(8), 290–296 (1974)

    Article  MathSciNet  Google Scholar 

  10. Schenzel, P.: Proregular sequences, local cohomology, and completion. Math. Scand. 92, 161–180 (2003)

    Article  MathSciNet  Google Scholar 

  11. Schenzel, P.: A criterion for I-adic completeness. Arch. Math. 102, 25–33 (2014)

    Article  MathSciNet  Google Scholar 

  12. Schenzel, P., Simon, A.-M.: Completion, Čech and Local Homology and Cohomology. Interactions Between Them. Springer, Cham (2018)

  13. Simon, A.-M.: Some homological properties of complete modules. Math. Proc. Camb. Philos. Soc. 108, 231–246 (1990)

    Article  MathSciNet  Google Scholar 

  14. Spaltenstein, N.: Resolutions of unbounded complexes. Compos. Math. 65, 121–154 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schenzel.

Additional information

Dedicated to my daughters Sara and Judith.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenzel, P. Čech (Co-) Complexes as Koszul Complexes and Applications. Vietnam J. Math. 49, 1227–1256 (2021). https://doi.org/10.1007/s10013-020-00459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-020-00459-3

Keywords

Mathematics Subject Classification (2010)

Navigation