Skip to main content
Log in

Numerical Bifurcation Analysis of Physiologically Structured Population Models via Pseudospectral Approximation

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Physiologically structured population models are typically formulated as a partial differential equation of transport type for the density, with a boundary condition describing the birth of new individuals. Here we develop numerical bifurcation methods by combining pseudospectral approximate reduction to a finite dimensional system with the use of established tools for ODE. A key preparatory step is to view the density as the derivative of the cumulative distribution. To demonstrate the potential of the approach, we consider two classes of models: a size-structured model for waterfleas (Daphnia) and a maturity-structured model for cell proliferation. Using the package MatCont, we compute numerical bifurcation diagrams, like steady-state stability regions in a two-parameter plane and parametrized branches of equilibria and periodic solutions. Our rather positive conclusion is that a rather low dimension may yield a rather accurate diagram! In addition we show numerically that, for the two models considered here, equilibria of the approximating system converge to the true equilibrium as the dimension of the approximating system increases; this last result is also proved theoretically under some regularity conditions on the model ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Andò, A., Breda, D.: Collocation techniques for structured populations modeled by delay equations. In: Aguiar, M. et al. (eds.) Current Trends in Dynamical Systems in Biology and Natural Sciences. SEMA SIMAI Springer, vol. 21. Springer (2020)

  2. Andò, A., Breda, D., Scarabel, F.: Numerical continuation and delay equations: A novel approach for complex models of structured populations. Discrete Contin. Dyn. Syst. Ser S. https://doi.org/10.3934/dcdss.2020165 (2019)

  3. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Books in Mathematics, 2nd edn. Dover Publications, Inc., Mineola (2001)

  4. Breda, D., Diekmann, O., Gyllenberg, M., Scarabel, F., Vermiglio, R.: Pseudospectral discretization of nonlinear delay equations: new prospects for numerical bifurcation analysis. SIAM J. Appl. Dyn. Syst. 15, 1–23 (2016)

    Article  MathSciNet  Google Scholar 

  5. Breda, D., Diekmann, O., Liessi, D., Scarabel, F.: Numerical bifurcation analysis of a class of nonlinear renewal equations. Electron. J. Qual. Theory Differ. Equ. 2016, 65 (2016)

    Article  MathSciNet  Google Scholar 

  6. Breda, D., Getto, Ph, Sánchez Sanz, J., Vermiglio, R.: Computing the eigenvalues of realistic Daphnia models by pseudospectral methods. SIAM J. Sci. Comput. 37, A2607–A2629 (2015)

    Article  MathSciNet  Google Scholar 

  7. Breda, D., Maset, S., Vermiglio, R.: Stability of Linear Delay Differential Equations. A Numerical Approach with MATLAB. SpringerBriefs in Electrical and Computer Engineering. SpringerBriefs in Control, Automation and Robotics. Springer, New York (2015)

    Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang Jr, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer Science & Business Media (2012)

  9. de Roos, A.M.: PSPM analysis. https://bitbucket.org/amderoos/pspmanalysis(2019)

  10. de Roos, A.M., Diekmann, O., Getto, Ph, Kirkilionis, M.A.: Numerical equilibrium analysis for structured consumer resource models. Bull. Math. Biol. 72, 259–297 (2010)

    Article  MathSciNet  Google Scholar 

  11. de Roos, A.M., Metz, J.A.J., Evers, E., Leipoldt, A.: A size dependent predator-prey interaction: who pursues whom. J. Math. Biol. 28, 609–643 (1990)

    Article  MathSciNet  Google Scholar 

  12. de Roos, A.M., Persson, L.: Population and Community Ecology of Ontogenetic Development. Monographs in Population Biology. Princeton University Press, Oxfordshine (2013)

    Book  Google Scholar 

  13. Dhooge, A., Govaerts, W., Kuznetsov, Yu.A., Meijer, H.G.E., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14, 147–175 (2008)

    Article  MathSciNet  Google Scholar 

  14. Diekmann, O., Gyllenberg, M., Metz, J.A.J.: On models of physiologically structured populations and their reduction to ordinary differential equations. J. Math. Biol. 80, 189–204 (2020)

    Article  MathSciNet  Google Scholar 

  15. Diekmann, O., Gyllenberg, M., Metz, J.A.J.: Steady-state analysis of structured population models. Theor. Popul. Biol. 63, 309–338 (2003)

    Article  Google Scholar 

  16. Diekmann, O., Gyllenberg, M., Metz, J.A.J.: Finite dimensional state representation of linear and nonlinear delay systems. J. Dyn. Differ. Equ. 30, 1439–1467 (2018)

    Article  MathSciNet  Google Scholar 

  17. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Nakaoka, S., de Roos, A.M.: Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math. Biol. 61, 277–318 (2010)

    Article  MathSciNet  Google Scholar 

  18. Diekmann, O., Scarabel, F., Vermiglio, R.: Pseudospectral discretization of delay differential equations in sun-star formulation: results and conjectures. Discret. Contin. Dyn. Syst. Ser S. https://doi.org/10.3934/dcdss.2020196 (2019)

  19. Diekmann, O., Verduyn Lunel, S.M., van Gils, S.A., Walther, H.-O.: Delay Equations. Functional-, Complex-, and Nonlinear Analysis. Applied Mathematical Sciences, vol. 110. Springer, New York (1995)

    MATH  Google Scholar 

  20. Diekmann, O., Verduyn Lunel, S.: Twin semigroups and delay equations. Submitted to J. Diff. Equ. Preprint available at: https://arxiv.org/pdf/1906.03409.pdf (2019)

  21. Doumic, M., Marciniak-Czochra, A., Perthame, B., Zubelli, J.P.: A structured population model of cell differentiation. SIAM J. Appl. Math. 11, 1918–1940 (2011)

    Article  MathSciNet  Google Scholar 

  22. Fornberg, B., Sloan, D.M.: A review of pseudospectral methods for solving partial differential equations. Acta Numer. 3, 203–267 (1994)

    Article  MathSciNet  Google Scholar 

  23. Funaro, D.: Polynomial Approximation of Differential Equations. Lecture Notes in Physics Monographs, vol. 8. Springer, Berlin (1992)

    Book  Google Scholar 

  24. Getto, Ph, Gyllenberg, M., Nakata, Y., Scarabel, F.: Stability analysis of a state-dependent delay differential equation for cell maturation: Analytical and numerical methods. J. Math. Biol. 79, 281–328 (2019)

    Article  MathSciNet  Google Scholar 

  25. Getto, Ph, Waurick, M.: A differential equation with state-dependent delay from cell population biology. J. Differ. Equ. 260, 6176–6200 (2016)

    Article  MathSciNet  Google Scholar 

  26. Gyllenberg, M., Scarabel, F., Vermiglio, R.: Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization. Appl. Math. Comput. 333, 490–505 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Functional differential equations with state-dependent delays: theory and applications. In: Cañada, A., Drábek, P., Fonda, A. (eds.) Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, pp 435–545, North-Holland (2006)

  28. Kooijman, S.A.L.M., Metz, J.A.J.: On the dynamics of chemically stressed populations: The deduction of population consequences from effects on individuals. Ecotoxicol. Environ. Saf. 8, 254–274 (1984)

    Article  Google Scholar 

  29. Krylov, V.I.: Convergence of algebraic interpolation with respect to the roots of Chebyshev’s polynomial for absolutely continuous functions and functions of bounded variation. Dokl. Akad. Nauk SSSR (N.S.) 107, 362–365 (1956). (in Russian)

    MathSciNet  MATH  Google Scholar 

  30. Marciniak-Czochra, A., Stiehl, T., Ho, A.D., Jäger, W., Wagner, W.: Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18, 377–386 (2009)

    Article  Google Scholar 

  31. Mastroianni, G., Milovanović, G. V.: Interpolation Processes. Basic Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

  32. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986)

    Book  Google Scholar 

  33. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics. Birkhäuser, Basel (2007)

    Book  Google Scholar 

  34. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  35. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

Download references

Acknowledgments

The research of FS is funded by NSERC-Sanofi Industrial Research Chair. DB, FS and RV are members of the INdAM Research group GNCS. MG was supported by the Centre of Excellence in Analysis and Dynamics Research, Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Scarabel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarabel, F., Breda, D., Diekmann, O. et al. Numerical Bifurcation Analysis of Physiologically Structured Population Models via Pseudospectral Approximation. Vietnam J. Math. 49, 37–67 (2021). https://doi.org/10.1007/s10013-020-00421-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-020-00421-3

Keywords

Mathematics Subject Classification (2010)

Navigation