Skip to main content
Log in

Pole-Swapping Algorithms for Alternating and Palindromic Eigenvalue Problems

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Pole-swapping algorithms are generalizations of bulge-chasing algorithms for the generalized eigenvalue problem. Structure-preserving pole-swapping algorithms for the palindromic and alternating eigenvalue problems, which arise in control theory, are derived. A refinement step that guarantees backward stability of the algorithms is included. This refinement can also be applied to bulge-chasing algorithms that had been introduced previously, thereby guaranteeing their backward stability in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Here and in what follows, the notation AρB is shorthand for βAαB, where α and β are any scalars satisfying ρ = α/β. This allows us to include the case \(\rho = \infty \) by taking β = 0.

  2. In [14] we considered multi-shift bulge-chasing algorithms of arbitrary degree. Here we are considering only a single-shift algorithm, and this generalizes the single-shift version of the algorithm in [14].

References

  1. Apel, T., Mehrmann, V., Watkins, D.S.: Structured eigenvalue methods for the computation of corner singularities in 3d anisotropic elastic structures. Comput. Methods Appl. Mech. Eng. 191, 4459–4473 (2002)

    Article  Google Scholar 

  2. Aurentz, J.L., Mach, T., Robol, L., Vandebril, R., Watkins, D.S.: Core-Chasing Algorithms for the Eigenvalue Problem. SIAM, Philadelphia (2018)

    Book  Google Scholar 

  3. Aurentz, J.L., Mach, T., Robol, L., Vandebril, R., Watkins, D.S.: Fast and backward stable computation of roots of polynomials, part II: backward error analysis; companion matrix and companion pencil. SIAM. J. Matrix Anal. Appl. 39, 1245–1269 (2018)

    Article  MathSciNet  Google Scholar 

  4. Aurentz, J.L., Mach, T., Robol, L., Vandebril, R., Watkins, D.S.: Fast and backward stable computation of the eigenvalues and eigenvectors of matrix polynomials. Math. Comp. 88, 313–347 (2019)

    Article  MathSciNet  Google Scholar 

  5. Aurentz, J.L., Mach, T., Vandebril, R., Watkins, D.S.: Fast and backward stable computation of roots of polynomials. SIAM J. Matrix Anal. Appl. 36, 942–973 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bai, Z., Demmel, J.W.: On swapping diagonal blocks in real Schur form. Linear Algebra Appl. 186, 73–95 (1993)

    Article  MathSciNet  Google Scholar 

  7. Camps, D.: Pole Swapping Methods for the Eigenvalue Problem: Rational QR Algorithms. PhD thesis, KU Leuven (2019)

  8. Camps, D., Mach, T., Vandebril, R., Watkins, D.S.: On pole-swapping algorithms for the eigenvalue problem. arXiv:1906.08672 (2019). Electron Trans. Numer. Anal. (submitted)

  9. Camps, D., Meerbergen, K., Vandebril, R.: A rational QZ method. SIAM J. Matrix Anal. Appl. 40, 943–972 (2019)

    Article  MathSciNet  Google Scholar 

  10. Camps, D., Meerbergen, K., Vandebril, R.: A multishift, multipole rational QZ method with aggressive early deflation. arXiv:1902.10954 (2019). Submitted for publication

  11. Francis, J.G.F.: The QR transformation—part II. Comput. J. 4, 332–345 (1962)

    Article  Google Scholar 

  12. Kågström, B., Poromaa, P.: Computing eigenspaces with specified eigenvalues of a regular matrix pair (A,b) and condition estimation: theory, algorithms and software. Numer. Algor. 12, 369–407 (1996)

    Article  MathSciNet  Google Scholar 

  13. Kågström, B., Poromaa, P.: LAPACK-Style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs. ACM Trans. Math. Softw. 22, 78–103 (1996)

    Article  MathSciNet  Google Scholar 

  14. Kressner, D., Schröder, C., Watkins, D.S.: Implicit QR algorithms for palindromic and even eigenvalue problems. Numer. Algorithms 51, 209–238 (2009)

    Article  MathSciNet  Google Scholar 

  15. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006)

    Article  MathSciNet  Google Scholar 

  16. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

    Article  MathSciNet  Google Scholar 

  17. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form. Numer. Linear Algebra Appl. 16, 63–86 (2009)

    Article  MathSciNet  Google Scholar 

  18. Mehrmann, V., Watkins, D.S.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput. 22, 1905–1925 (2001)

    Article  MathSciNet  Google Scholar 

  19. Mehrmann, V., Watkins, D.S.: Polynomial eigenvalue problems with Hamiltonian structure. Electron. Trans. Numer. Anal. 13, 106–118 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Mehrmann, V.L.: The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution. Lecture Notes in Control and Information Sciences, vol. 163. Springer, Berlin (1991)

    Book  Google Scholar 

  21. Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)

    Article  MathSciNet  Google Scholar 

  22. Stewart, G.W.: On the sensitivity of the eigenvalue problem Ax = λBx. SIAM J. Numer. Anal. 9, 669–686 (1972)

    Article  MathSciNet  Google Scholar 

  23. Stewart, G.W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15, 727–764 (1973)

    Article  MathSciNet  Google Scholar 

  24. Van Dooren, P.: A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput. 2, 121–135 (1981)

    Article  MathSciNet  Google Scholar 

  25. Vandebril, R., Watkins, D.S.: An extension of the QZ algorithm beyond the Hessenberg-upper triangular pencil. Electron. Trans. Numer. Anal. 40, 17–35 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  27. Watkins, D.S.: Fundamentals of Matrix Computations, 3rd edn. Wiley, New York (2010)

    MATH  Google Scholar 

  28. Watkins, D.S.: Francis’s algorithm. Amer. Math. Mon. 118, 387–403 (2011)

    Article  MathSciNet  Google Scholar 

  29. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Research Council KU Leuven, project C14/16/056 (Inverse-free Rational Krylov Methods: Theory and Applications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Watkins.

Additional information

Dedicated to Professor Volker Mehrmann on his 65th birthday.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mach, T., Steel, T., Vandebril, R. et al. Pole-Swapping Algorithms for Alternating and Palindromic Eigenvalue Problems. Vietnam J. Math. 48, 679–701 (2020). https://doi.org/10.1007/s10013-020-00408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-020-00408-0

Keywords

Mathematics Subject Classification (2010)

Navigation