Skip to main content

An Asymptotic Mean Value Formula for Eigenvalues of the Hessian Related to Concave/Convex Envelopes


In this paper we characterize viscosity solutions to the PDE λj(D2u) = 0 by means of the asymptotic mean value formula

$$ u(x) = \underset{\dim(S)=j}{\min} \underset{v\in S, |v|=1}{\max} \left\{\frac{1}{2} u (x + \epsilon v) + \frac{1}{2} u (x - \epsilon v)\right\} + o(\epsilon^{2}), $$

as 𝜖 → 0, that holds in the viscosity sense. Here, λ1(D2u) ≤⋯ ≤ λN(D2u) are the ordered eigenvalues of the Hessian D2u. This equation is related to optimal concave/convex envelopes.

This is a preview of subscription content, access via your institution.


  1. Alexandroff, A.D.: Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Leningr. State Univ. Ann. Math. Ser. 6, 3–35 (1939)

    MathSciNet  Google Scholar 

  2. Birindelli, I., Galise, G., Leoni, F.: Liouville theorems for a family of very degenerate elliptic non lineal operators. Nonlinear Anal. 161, 198–211 (2017)

    MathSciNet  Article  Google Scholar 

  3. Birindelli, I., Galise, G., Ishii, I.: A family of degenerate elliptic operators: maximum principle and its consequences. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 417–441 (2018)

    MathSciNet  Article  Google Scholar 

  4. Blanc, P., Rossi, J.D.: Games for eigenvalues of the Hessian and concave/convex envelopes. J. Math. Pures Appl. 127, 192–215 (2019)

    MathSciNet  Article  Google Scholar 

  5. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations, III : functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985)

    MathSciNet  Article  Google Scholar 

  6. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27, 1–67 (1992)

    MathSciNet  Article  Google Scholar 

  7. Harvey, F.R., Lawson, H.B. Jr: Dirichlet duality and the nonlinear Dirichlet problem. Commun. Pure Appl. Math. 62, 396–443 (2009)

    MathSciNet  Article  Google Scholar 

  8. Harvey, F.R., Lawson, H.B. Jr: p-convexity, p-plurisubharmonicity and the Levi problem. Indiana Univ. Math. J. 62, 149–169 (2013)

    MathSciNet  Article  Google Scholar 

  9. Lindqvist, P., Manfredi, J.: On the mean value property for the p-Laplace equation in the plane. Proc. Amer. Math. Soc. 144, 143–149 (2016)

    MathSciNet  Article  Google Scholar 

  10. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for p-harmonic functions. Proc. Amer. Math. Soc. 138, 881–889 (2010)

    MathSciNet  Article  Google Scholar 

  11. Oberman, A.M., Silvestre, L.: The Dirichlet problem for the convex envelope. Trans. Amer. Math. Soc. 363, 5871–5886 (2011)

    MathSciNet  Article  Google Scholar 

  12. Sha, J.-P.: Handlebodies and p-convexity. J. Differ. Geom. 25, 353–361 (1987)

    MathSciNet  Article  Google Scholar 

  13. Wu, H.: Manifolds of partially positive curvature. Indiana Univ. Math. J. 36, 525–548 (1987)

    MathSciNet  Article  Google Scholar 

Download references


The authors are partially supported by CONICET grant PIP GI No 11220150100036CO (Argentina), by UBACyT grant 20020160100155BA (Argentina) and by MINECO MTM2015-70227-P (Spain).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Julio D. Rossi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To Marco Antonio López on the occasion of his 70th birthday, with our best wishes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanc, P., Rossi, J.D. An Asymptotic Mean Value Formula for Eigenvalues of the Hessian Related to Concave/Convex Envelopes. Vietnam J. Math. 48, 335–344 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Eigenvalues of the Hessian
  • Concave/convex envelopes
  • Mean value properties

Mathematics Subject Classification (2010)

  • 35D40
  • 35J25
  • 26B25