Skip to main content
Log in

Existence and Long-Time Behavior of Solutions to a Class of Nonclassical Diffusion Equations with Infinite Delays

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a nonclassical diffusion equation with polynomial nonlinearity and infinite delay in bounded domains with homogeneous Dirichlet boundary conditions. We first prove the existence and uniqueness of weak solutions to the problem by using the Galerkin method. Then, we prove the existence of a pullback \(\mathcal {D}\)-attractor for the associated continuous process with respect to a large class of non-autonomous forcing terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E.C.: On the problem of diffusion in solids. Acta Mech. 37, 265–296 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anh, C.T., Bao, T.Q.: Pullback attractors for a class of non-autonomous nonclassical diffusion equations. Nonlinear Anal. 73, 399–412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anh, C.T., Quyet, D.T.: g-Navier–Stokes equations with infinite delays. Vietnam J. Math. 40, 57–78 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Anh, C.T., Toan, N.D.: Existence and upper semicontinuity of uniform attractors in \(h^{1}(\mathbb {R}^{N})\) for nonautonomous nonclassical diffusion equations. Ann. Pol. Math. 111, 271–295 (2014)

    Article  MATH  Google Scholar 

  5. Anh, C.T., Toan, N.D.: Nonclassical diffusion equations on r N with singularly oscillating external forces. Appl. Math. Lett. 38, 20–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, L., Zhang, F.: Uniform attractors for multi-valued process generated by non-autonomous nonclassical diffusion equations with delay in unbounded domain without uniqueness of solutions. Asymptot. Anal. 94, 187–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caraballo, T., Łukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. 64, 484–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caraballo, T., Márquez-Durán, A.M.: Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay. Dyn. Partial Differ. Equ. 10, 267–281 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caraballo, T., Márquez-Durán, A.M., Rivero, F.: Well-posedness and asymptotic behavior of a nonclassical nonautonomous diffusion equation with delay. Int. J. Bifurc. Chaos 25, 1540021 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carvalho, A., Langa, J.A., Robinson, J.C.: Attractors for Infinite-dimensional Non-autonomous Dynamical Systems. Springer, New York (2013)

    Book  MATH  Google Scholar 

  11. Harraga, H., Yebdri, M.: Pullback attractors for a class of semilinear nonclassical diffusion equations with delay. Electron. J. Differ. Equ. 2016, 07 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473. Springer, Berlin (1991)

    MATH  Google Scholar 

  13. Hu, Z., Wang, Y.: Pullback attractors for a nonautonomous nonclassical diffusion equation with variable delay. J. Math. Phys. 53, 072702 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lions, J.-L.: Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaires. Dunod, Paris (1969)

  15. Liu, Y.-F., Ma, Q.: Exponential attractors for a nonclassical diffusion equation. Electron. J. Differ. Equ. 2009, 9 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Marín-Rubio, P., Márquez-Durán, A.M., Real, J.: Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete Contin. Dyn. Syst. 31, 779–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marín-Rubio, P., Real, J., Valero, J.: Pullback attractors for a two-dimensional Navier–Stokes model in an infinite delay case. Nonlinear Anal. 74, 2012–2030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)

    Article  MATH  Google Scholar 

  19. Quyet, D.T.: Pullback attractors for 2D g-Navier-Stokes equations with infinite delays. Commun. Korean Math. Soc. 31, 519–532 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, C.Y., Wang, S.Y., Zhong, C.K.: Global attractors for a nonclassical diffusion equation. Acta Math. Appl. Sin. Engl. Ser. 23, 1271–1280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, C., Yang, M.: Dynamics of the nonclassical diffusion equations. Asymptot. Anal. 59, 51–81 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Toan, N.D.: Existence and long-time behavior of variational solutions to a class of nonclassical diffusion equations in non-cylindrical domains. Acta Math. Vietnam. 41, 37–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (1995)

    MATH  Google Scholar 

  24. Wang, S., Li, D., Zhong, C.K.: On the dynamics of a class of nonclassical parabolic equations. J. Math. Anal. Appl. 317, 565–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiao, Y.-L.: Attractors for a nonclassical diffusion equation. Acta Math. Appl. Sin. 18, 273–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xie, Y., Li, Q., Zhu, K.: Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. Nonlinear Anal. Real World Appl. 31, 23–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, F., Liu, Y.: Pullback attractors in \(h^{1}(\mathbb {R}^{N})\) for non-autonomous nonclassical diffusion equations. Dyn. Syst. 29, 106–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, K., Sun, C.: Pullback attractors for nonclassical diffusion equations with delays. J. Math. Phys. 56, 092703 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for the helpful comments and suggestions which improved the presentation of the paper.

Funding

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2015.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Duong Toan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, D.T.P., Toan, N.D. Existence and Long-Time Behavior of Solutions to a Class of Nonclassical Diffusion Equations with Infinite Delays. Vietnam J. Math. 47, 309–325 (2019). https://doi.org/10.1007/s10013-018-0320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-018-0320-0

Keywords

Mathematics Subject Classification (2010)

Navigation