Skip to main content
Log in

Computational Approaches for Mixed Integer Optimal Control Problems with Indicator Constraints

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Optimal control problems with mixed integer control functions and logical implications, such as a state-dependent restriction on when a control can be chosen (so-called indicator or vanishing constraints) frequently arise in practice. A prominent example is the optimal cruise control of a truck. As every driver knows, admissible gear choices critically depend on the current velocity. A large variety of approaches has been proposed on how to numerically solve this challenging class of control problems. We present a computational study in which the most relevant of them are compared for a reference model problem, based on the same discretization of the differential equations. This comprehends dynamic programming, implicit formulations of the switching decisions, and a number of explicit reformulations, including mathematical programs with vanishing constraints in function spaces. We survey all of these approaches in a general manner, where several formulations have not been reported in the literature before. We apply them to a benchmark truck cruise control problem and discuss advantages and disadvantages with respect to optimality, feasibility, and stability of the algorithmic procedure, as well as computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abichandani, P., Benson, H.Y., Kam, M.: Multi-vehicle path coordination under communication constraints. In: 2008 American Control Conference, pp. 650–656. IEEE (2008)

  2. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. Ser. A 114, 69–99 (2008)

    Article  MathSciNet  Google Scholar 

  3. Anitescu, M., Tseng, P., Wright, S.J.: Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties. Math. Program. Ser. A 110, 337–371 (2007)

    Article  MathSciNet  Google Scholar 

  4. Balas, E.: Disjunctive programming and a Hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6, 466–486 (1985)

    Article  MathSciNet  Google Scholar 

  5. Baumrucker, B.T., Biegler, L.T.: MPEC Strategies for optimization of a class of hybrid dynamic systems. J. Process Control 19, 1248–1256 (2009)

    Article  Google Scholar 

  6. Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60, 503–515 (1954)

    Article  MathSciNet  Google Scholar 

  7. Bellman, R.E.: Dynamic Programming, 6th edn. University Press, Princeton (1957)

    Google Scholar 

  8. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J.T., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. 1. Athena Scientific, Belmont (2005)

    Google Scholar 

  10. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 4th edn., vol. 2. Athena Scientific, Belmont (2012)

    Google Scholar 

  11. Bock, H.G., Kirches, C., Meyer, A., Potschka, A.: Numerical solution of optimal control problems with explicit and implicit switches. Optim. Methods Softw. 33, 450–474 (2018)

    Article  MathSciNet  Google Scholar 

  12. Buchner, A.: Auf Dynamischer Programmierung Basierende Nichtlineare Modellprädiktive Regelung Für LKW. Diploma thesis, Ruprecht-Karls-Universität Heidelberg (2010)

  13. Burger, M., Gerdts, M., Göttlich, S., Herty, M.: Dynamic programming approach for discrete-valued time discrete optimal control problems with dwell time constraints. In: Bociu, L., Désidëri, J.-A., Habbal, A. (eds.) System Modeling and Optimization. CSMO: IFIP Conference on System Modeling and Optimization. IFIP Advances in Information and Communication Technology, vol. 494, pp. 159–168. Springer, Cham (2015)

    Google Scholar 

  14. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Nonlinear programming techniques for operative planning in large drinking water networks. Open Appl. Math. J. 3, 14–28 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. Ser. A 86, 595–614 (1999)

    Article  MathSciNet  Google Scholar 

  16. Claeys, M., Daafouz, J., Henrion, D.: Modal occupation measures and LMI relaxations for nonlinear switched systems control. Automatica 64, 143–154 (2016)

    Article  MathSciNet  Google Scholar 

  17. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. Ser. A 85, 107–134 (1999)

    Article  MathSciNet  Google Scholar 

  18. Fang, H.-R., Leyffer, S., Munson, T.S.: A pivoting algorithm for linear programming with linear complementarity constraints. Optim. Methods Softw. 27, 89–114 (2012)

    Article  MathSciNet  Google Scholar 

  19. Fletcher, R., Leyffer, S.: Solving mathematical programs with complementarity constraints as nonlinear programs. Optim. Methods Softw. 19, 15–40 (2004)

    Article  MathSciNet  Google Scholar 

  20. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, USA (2002)

    MATH  Google Scholar 

  21. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. Ser. A 106, 225–236 (2006)

    Article  MathSciNet  Google Scholar 

  22. Fügenschuh, A., Herty, M., Klar, A., Martin, A.: Combinatorial and continuous models for the optimization of traffic flows on networks. SIAM J. Optim. 16, 1155–1176 (2006)

    Article  MathSciNet  Google Scholar 

  23. Fukushima, M., Qi, L. (eds.): Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  24. Gerdts, M.: Solving mixed-integer optimal control problems by branch&bound: a case study from automobile test-driving with gear shift. Optim. Control Appl. Methods 26, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  25. Gerdts, M.: A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27, 169–182 (2006)

    Article  MathSciNet  Google Scholar 

  26. Gerdts, M., Sager, S.: Mixed-integer DAE optimal control problems: Necessary conditions and bounds. In: Biegler, L., Campbell, S.L., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints, Chapter 9, pp. 189–212. SIAM (2012)

  27. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3, 227–252 (2002)

    Article  MathSciNet  Google Scholar 

  28. Gugat, M., Herty, M., Klar, A., Leugering, G.: Optimal control for traffic flow networks. J. Optim. Theory Appl. 126, 589–616 (2005)

    Article  MathSciNet  Google Scholar 

  29. Günlük, O., Linderoth, J.T.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. B 124, 183–205 (2010)

    Article  MathSciNet  Google Scholar 

  30. Hellström, E., Ivarsson, M., Aslund, J., Nielsen, L.: Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control Eng. Pract. 17, 245–254 (2009)

    Article  Google Scholar 

  31. Hoheisel, T.: Mathematical Programs with Vanishing Constraints. PhD thesis, Julius–Maximilians–Universität Würzburg (2009)

  32. Jung, M.: Relaxations and Approximations for Mixed-Integer Optimal Control. PhD thesis, University Heidelberg (2013)

  33. Jung, M.N., Kirches, C., Sager, S.: On perspective functions and vanishing constraints in mixed-integer nonlinear optimal control. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization: Festschrift for Martin Grötschel, pp. 387–417. Springer, Berlin (2013)

    Chapter  Google Scholar 

  34. Jung, M.N., Reinelt, G., Sager, S.: The Lagrangian relaxation for the combinatorial integral approximation problem. Optim. Methods Softw. 30, 54–80 (2015)

    Article  MathSciNet  Google Scholar 

  35. Kawajiri, Y., Biegler, L.T.: Nonlinear programming superstructure for optimal dynamic operations of simulated moving bed processes. Ind. Eng. Chem. Res. 45, 8503–8513 (2006)

    Article  Google Scholar 

  36. Kirches, C.: Fast Numerical Methods for Mixed-Integer Nonlinear Model-Predictive Control. Advances in Numerical Mathematics. Springer Vieweg, Wiesbaden (2011)

    Book  Google Scholar 

  37. Kirches, C., Bock, H.G., Leyffer, S.: Modeling mixed-integer constrained optimal control problems in AMPL. In: Breitenecker, F., Troch, I. (eds.) Proceedings of MATHMOD 2012, Vienna. ARGESIM Report No. S38 (2012)

  38. Kirches, C., Bock, H.G., Schlöder, J.P., Sager, S.: Mixed-integer NMPC for predictive cruise control of heavy-duty trucks. In: 2013 European Control Conference (ECC), pp. 4118–4123 (2013)

  39. Kirches, C., Lenders, F.: Approximation properties and tight bounds for constrained mixed-integer optimal control. Optimization Online (Technical Report) 5404 (2015)

  40. Kirches, C., Leyffer, S.: TACO: A toolkit for AMPL control optimization. Math. Program. Comput. 5, 227–265 (2013)

    Article  MathSciNet  Google Scholar 

  41. Kirches, C., Potschka, A., Bock, H.G., Sager, S.: A parametric active-set method for QPs with vanishing constraints arising in a robot motion planning problem. Pac. J. Optim. 9, 275–299 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Kirches, C., Sager, S., Bock, H.G., Schlöder, J.P.: Time-optimal control of automobile test drives with gear shifts. Optim. Control Appl. Methods 31, 137–153 (2010)

    Article  MathSciNet  Google Scholar 

  43. Kirches, C., Wirsching, L., Bock, H.G., Schlöder, J.P.: Efficient direct multiple shooting for nonlinear model predictive control on long horizons. J. Process Control 22, 540–550 (2012)

    Article  Google Scholar 

  44. Kirchner, C., Herty, M., Göttlich, S., Klar, A.: Optimal control for continuous supply network models. Netw. Heterog. Media 1, 675–688 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (eds.): Evaluating Gas Network Capacities. SIAM-MOS series on Optimization. SIAM (2015)

  46. Leyffer, S.: Complementarity constraints as nonlinear equations: Theory and numerical experiences. In: Dempe, S., Kalashnikov, V (eds.) Optimization with Multivalued Mappings. Springer Optimization and Its Applications, vol. 2, pp. 169–208. Springer, Boston, MA (2006)

  47. Leyffer, S., Munson, T.S.: A globally convergent filter method for MPECs. Preprint ANL/MCS-p1457-0907, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA (2007)

  48. Moehle, N., Boyd, S.: A perspective-based convex relaxation for switched-affine optimal control. Syst. Control Lett. 86, 34–40 (2015)

    Article  MathSciNet  Google Scholar 

  49. Oldenburg, J., Marquardt, W.: Disjunctive modeling for optimal control of hybrid systems. Comput. Chem. Eng. 32, 2346–2364 (2008)

    Article  Google Scholar 

  50. Palagachev, K., Gerdts, M.: Mathematical programs with blocks of vanishing constraints arising in discretized mixed-integer optimal control problems. Set-valued Var. Anal. 23, 149–167 (2015)

    Article  MathSciNet  Google Scholar 

  51. Prata, A., Oldenburg, J., Kroll, A., Marquardt, W.: Integrated scheduling and dynamic optimization of grade transitions for a continuous polymerization reactor. Comput. Chem. Eng. 32, 463–476 (2008)

    Article  Google Scholar 

  52. Raghunathan, A.U., Biegler, L.T.: Mathematical programs with equilibrium constraints (MPECs) in process engineering. Comput. Chem. Eng. 27, 1381–1392 (2003)

    Article  Google Scholar 

  53. Raghunathan, A.U., Diaz, M.S., Biegler, L.T.: An MPEC formulation for dynamic optimization of distillation operations. Comput. Chem. Eng. 28, 2037–2052 (2004)

    Article  Google Scholar 

  54. Ralph, D., Wright, S.J.: Some properties of regularization and penalization schemes for MPECs. Optim. Methods Softw. 19, 527–556 (2004)

    Article  MathSciNet  Google Scholar 

  55. Sager, S.: Numerical Methods for Mixed-Integer Optimal Control Problems. Der Andere Verlag, Lübeck (2005)

    MATH  Google Scholar 

  56. Sager, S.: A Benchmark library of mixed-integer optimal control problems. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 169–208. Springer, New York (2012)

  57. Sager, S., Bock, H.G., Diehl, M.: The integer approximation error in mixed-integer optimal control. Math. Program. Ser. A 133, 1–23 (2012)

    Article  MathSciNet  Google Scholar 

  58. Sager, S., Claeys, M., Messine, F.: Efficient upper and lower bounds for global mixed-integer optimal control. J. Glob. Optim. 61, 721–743 (2015)

    Article  MathSciNet  Google Scholar 

  59. Sager, S., Jung, M., Kirches, C.: Combinatorial integral approximation. Math. Methods Oper. Res. 73, 363–380 (2011)

    Article  MathSciNet  Google Scholar 

  60. Sager, S., Bock, H.G., Reinelt, G.: Direct methods with maximal lower bound for mixed-integer optimal control problems. Math. Program. 118, 109–149 (2009)

    Article  MathSciNet  Google Scholar 

  61. Sawaya, N.W., Grossmann, I.E.: Computational implementation of non-linear convex hull reformulation. Comput. Chem. Eng. 31, 856–866 (2007)

    Article  Google Scholar 

  62. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  MathSciNet  Google Scholar 

  63. Scholtes, S.: Nonconvex structures in nonlinear programming. Oper. Res. 52, 368–383 (2004)

    Article  MathSciNet  Google Scholar 

  64. Sherali, H.D.: RLT: A unified approach for discrete and continuous nonconvex optimization. Ann. Oper. Res. 149, 185–193 (2007)

    Article  MathSciNet  Google Scholar 

  65. Sonntag, C., Stursberg, O., Engell, S.: Dynamic optimization of an industrial evaporator using graph search with embedded nonlinear programming. In: Cassandras, C., et al. (eds.) Analysis and Design of Hybrid System 2006. IPV-IFAC Proceedings Volume, pp. 211–216. Elsevier (2006)

  66. Stein, O., Oldenburg, J., Marquardt, W.: Continuous reformulations of discrete–continuous optimization problems. Comput. Chem. Eng. 28, 1951–1966 (2004)

    Article  Google Scholar 

  67. Stubbs, R.A., Mehrotra, S.: Generating convex polynomial inequalities for mixed 0–1 programs. J. Glob. Optim. 24, 311–332 (2002)

    Article  MathSciNet  Google Scholar 

  68. Terwen, S., Back, M., Krebs, V.: Predictive powertrain control for heavy duty trucks. In: Proceedings of IFAC Symposium in Advances in Automotive Control, pp. 451-457, Salerno, Italy (2004)

    Article  Google Scholar 

  69. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work reported in this article was conducted when S. Sass was with Institut für Mathematische Optimierung, Otto-von-Guericke-Universität Magdeburg.

Funding

This study received funding from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 314838170, GRK 2297 MathCoRe and Priority Programme 1962 “Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization,” grant no. KI1839/1-1; the German Federal Ministry of Education and Research, program “Mathematics for Innovations in Industry and Service,” grants no. 05M17MBA-MoPhaPro, 05M18MBA-MoRENet; and program “IKT 2020: Software Engineering,” grant no. 61210304-ODINE. Dynamic programming results were obtained using an implementation by Alexander Buchner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kirches.

Additional information

Dedicated to Hans Georg Bock on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, M.N., Kirches, C., Sager, S. et al. Computational Approaches for Mixed Integer Optimal Control Problems with Indicator Constraints. Vietnam J. Math. 46, 1023–1051 (2018). https://doi.org/10.1007/s10013-018-0313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-018-0313-z

Keywords

Mathematics Subject Classification (2010)

Navigation