Skip to main content
Log in

Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

The minimization of operation costs for natural gas transport networks is studied. Based on a recently developed model hierarchy ranging from detailed models of instationary partial differential equations with temperature dependence to highly simplified algebraic equations, modeling and discretization error estimates are presented to control the overall error in an optimization method for stationary and isothermal gas flows. The error control is realized by switching to more detailed models or finer discretizations if necessary to guarantee that a prescribed model and discretization error tolerance is satisfied in the end. We prove convergence of the adaptively controlled optimization method and illustrate the new approach with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.mso.math.fau.de/edom/projects/lamatto.html

References

  1. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MathSciNet  Google Scholar 

  2. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS-SIAM Series on Optimization, vol. 10. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  3. Bock, H.G., Diehl, M., Kostina, E., Schlöder, J.P.: Constrained optimal feedback control of systems governed by large differential algebraic equations. In: Biegler, L.T., et al. (eds.) Computational Science & Engineering Real-Time PDE-Constrained Optimization, pp 3–24. SIAM, Philadelphia (2007)

    Chapter  Google Scholar 

  4. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (2007)

    Google Scholar 

  5. Brockett, R.W.: Finite Dimensional Linear Systems. Classics in Applied Mathematics, vol. 74. SIAM, Philadelphia (2015)

    Book  Google Scholar 

  6. Carstensen, C., Hoppe, R.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251–266 (2006)

    Article  MathSciNet  Google Scholar 

  7. Carstensen, C., Hoppe, R.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75, 1033–1042 (2006)

    Article  MathSciNet  Google Scholar 

  8. Diehl, M., Bock, H. G., Schlöder, J.P.: Newton-type methods for the approximate solution of nonlinear programming problems in real-time. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp 177–200. Springer, Boston (2003)

    Google Scholar 

  9. Diehl, M., Bock, H.G., Schlöder, J.P.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. J. Control Optim. 43, 1714–1736 (2005)

    Article  MathSciNet  Google Scholar 

  10. Domschke, P., Dua, A., Stolwijk, J.J., Lang, J., Mehrmann, V.: Adaptive refinement strategies for the simulation of gas flow in networks using a model hierarchy. Institut für Mathematik 2017/03, Berlin (2017)

    MATH  Google Scholar 

  11. Domschke, P., Hiller, B., Lang, J., Tischendorf, C.: Modellierung von Gasnetzwerken: Eine Übersicht Technische Universität Darmstadt. http://www3.mathematik.tu-darmstadt.de/fb/mathe/preprints.html (2017)

  12. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  13. Feistauer, M.: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics Series, vol. 67. Longman Scientific & Technical, Harlow (1993)

    Google Scholar 

  14. Fügenschuh, A., Geiler, B., Gollmer, R., Morsi, A., Pfetsch, M.E., Rövekamp, J., Schmidt, M., Spreckelsen, K., Steinbach, M.C.: Physical and technical fundamentals of gas networks. In: Koch, T., et al. (eds.) Capacities, Evaluating Gas Network, pp. 17-44. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2015)

  15. Geiler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and Its Applications, vol. 154, pp 287–314. Springer, New York (2012)

  16. Geiler, B., Morsi, A., Schewe, L.: A new algorithm for MINLP applied to gas transport energy cost minimization. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp 321–353. Springer, Berlin Heidelberg (2013)

  17. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    Google Scholar 

  18. Gugat, M., Hante, F.M., Hirsch-Dick, M., Leugering, G.: Stationary states in gas networks. Netw. Heterog. Media 10, 295–320 (2015)

    Article  MathSciNet  Google Scholar 

  19. Gugat, M., Schultz, R., Wintergerst, D.: Networks of pipelines for gas with nonconstant compressibility factor: stationary states. Comput. Appl. Math. 37, 1066–1097 (2018)

    Article  MathSciNet  Google Scholar 

  20. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

    Google Scholar 

  21. Hante, F.M., Leugering, G., Martin, A., Schewe, L., Schmidt, M.: Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: from modeling to industrial applications. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds.) Industrial Mathematics and Complex Systems: Emerging Mathematical Models, Methods and Algorithms. Industrial and Applied Mathematics, pp 77–122. Springer Singapore, Singapore (2017)

    Chapter  Google Scholar 

  22. Joormann, I., Schmidt, M., Steinbach, M.C., Willert, B.M., et al.: What does “Feasible” mean?. In: Koch, T. (ed.) Evaluating Gas Network Capacities, pp. 211-232. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2015)

  23. Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (eds.): Evaluating Gas Network Capacities. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2015)

    MATH  Google Scholar 

  24. Kröner, A., Kunisch, K., Vexler, B.: Semismooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49, 830–858 (2011)

    Article  MathSciNet  Google Scholar 

  25. Leykekhman, D., Vexler, B.: A priori error estimates for three dimensional parabolic optimal control problems with pointwise control. SIAM J. Control Optim. 54, 2403–2435 (2016)

    Article  MathSciNet  Google Scholar 

  26. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352, 4081–4106 (2015)

    Article  MathSciNet  Google Scholar 

  27. Lurie, M.V.: Modeling of Oil Product and Gas Pipeline Transportation. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  28. Morse, A.S., Mayne, D.Q., Goodwin, G.C.: Applications of hysteresis switching in parameter adaptive control. IEEE Trans. Automat. Control 37, 1343–1354 (1992)

    Article  MathSciNet  Google Scholar 

  29. Nagy, Z., Agachi, S., Allgöwer, F., Findeisen, R., Diehl, M., Bock, H.G., Schlöder, J.P.: The tradeoff between modelling complexity and real-time feasibility in nonlinear model predictive control. In: Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics, SCI (2002)

  30. Petkov, P.H., Christov, N.D., Konstantinov, M.M.: Computational Methods for Linear Control Systems. Prentice Hall International Ltd., Hertfordshire (1991)

    MATH  Google Scholar 

  31. Rose, D., Schmidt, M., Steinbach, M.C., Willert, B.M.: Computational optimization of gas compressor stations: MINLP models versus continuous reformulations. Math. Methods Oper. Res. 83, 409–444 (2016)

    Article  MathSciNet  Google Scholar 

  32. Schewe, L., Koch, T., Martin, A., Pfetsch, M.E.: Mathematical optimization for evaluating gas network capacities. In: Kock, T., et al. (eds.) Evaluating Gas Network Capacities. MOS-SIAM Series on Optimization, vol. 21, pp 87–102. SIAM, Philadelphia (2015)

  33. Schmidt, M., Aßmann, D., Burlacu, R., Humpola, J., Joormann, I., Kanelakis, N., Koch, T., Oucherif, D., Pfetsch, M.E., Schewe, L., Schwarz, R., Sirvent, M.: GasLib—a library of gas network instances. Data 2017, 2 (2017). https://doi.org/10.3390/data2040040

    Google Scholar 

  34. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks. Optim. Eng. 16, 131–164 (2015)

    Article  MathSciNet  Google Scholar 

  35. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks: validation and results. Optim. Eng. 17, 437–472 (2016)

    Article  MathSciNet  Google Scholar 

  36. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (1980)

    Book  Google Scholar 

  37. Stolwijk, J.J., Mehrmann, V.: Error analysis and model adaptivity for flows in gas networks. Anal. Stiintifice ale Univ. Ovidius Constanta. Ser. Mat Accepted for publication (2017)

  38. Wilkinson, J.F., Holliday, D.V., Batey, E.H., Hannah, K.W.: Transient Flow in Natural Gas Transmission Systems. American Gas Association, New York (1964)

    Google Scholar 

  39. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16, 1–31 (2005)

    Article  MathSciNet  Google Scholar 

  40. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government. The authors acknowledge funding through the DFG Transregio TRR 154, subprojects A05, B03, and B08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Mehrmann.

Additional information

Dedicated to Hans Georg Bock on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrmann, V., Schmidt, M. & Stolwijk, J.J. Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization. Vietnam J. Math. 46, 779–801 (2018). https://doi.org/10.1007/s10013-018-0303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-018-0303-1

Keywords

Mathematics Subject Classification (2010)

Navigation