Vietnam Journal of Mathematics

, Volume 46, Issue 4, pp 779–801 | Cite as

Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization

  • Volker MehrmannEmail author
  • Martin Schmidt
  • Jeroen J. Stolwijk


The minimization of operation costs for natural gas transport networks is studied. Based on a recently developed model hierarchy ranging from detailed models of instationary partial differential equations with temperature dependence to highly simplified algebraic equations, modeling and discretization error estimates are presented to control the overall error in an optimization method for stationary and isothermal gas flows. The error control is realized by switching to more detailed models or finer discretizations if necessary to guarantee that a prescribed model and discretization error tolerance is satisfied in the end. We prove convergence of the adaptively controlled optimization method and illustrate the new approach with numerical examples.


Gas transport optimization Isothermal stationary Euler equations Model hierarchy Adaptive error control Marking strategy 

Mathematics Subject Classification (2010)

35Q31 65G99 65L70 90C30 93C40 



This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government. The authors acknowledge funding through the DFG Transregio TRR 154, subprojects A05, B03, and B08.


  1. 1.
    Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS-SIAM Series on Optimization, vol. 10. SIAM, Philadelphia (2010)CrossRefGoogle Scholar
  3. 3.
    Bock, H.G., Diehl, M., Kostina, E., Schlöder, J.P.: Constrained optimal feedback control of systems governed by large differential algebraic equations. In: Biegler, L.T., et al. (eds.) Computational Science & Engineering Real-Time PDE-Constrained Optimization, pp 3–24. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  4. 4.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (2007)Google Scholar
  5. 5.
    Brockett, R.W.: Finite Dimensional Linear Systems. Classics in Applied Mathematics, vol. 74. SIAM, Philadelphia (2015)CrossRefGoogle Scholar
  6. 6.
    Carstensen, C., Hoppe, R.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251–266 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carstensen, C., Hoppe, R.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75, 1033–1042 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Diehl, M., Bock, H. G., Schlöder, J.P.: Newton-type methods for the approximate solution of nonlinear programming problems in real-time. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp 177–200. Springer, Boston (2003)Google Scholar
  9. 9.
    Diehl, M., Bock, H.G., Schlöder, J.P.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. J. Control Optim. 43, 1714–1736 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Domschke, P., Dua, A., Stolwijk, J.J., Lang, J., Mehrmann, V.: Adaptive refinement strategies for the simulation of gas flow in networks using a model hierarchy. Institut für Mathematik 2017/03, Berlin (2017)zbMATHGoogle Scholar
  11. 11.
    Domschke, P., Hiller, B., Lang, J., Tischendorf, C.: Modellierung von Gasnetzwerken: Eine Übersicht Technische Universität Darmstadt. (2017)
  12. 12.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Feistauer, M.: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics Series, vol. 67. Longman Scientific & Technical, Harlow (1993)Google Scholar
  14. 14.
    Fügenschuh, A., Geiler, B., Gollmer, R., Morsi, A., Pfetsch, M.E., Rövekamp, J., Schmidt, M., Spreckelsen, K., Steinbach, M.C.: Physical and technical fundamentals of gas networks. In: Koch, T., et al. (eds.) Capacities, Evaluating Gas Network, pp. 17-44. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2015)Google Scholar
  15. 15.
    Geiler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and Its Applications, vol. 154, pp 287–314. Springer, New York (2012)Google Scholar
  16. 16.
    Geiler, B., Morsi, A., Schewe, L.: A new algorithm for MINLP applied to gas transport energy cost minimization. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp 321–353. Springer, Berlin Heidelberg (2013)Google Scholar
  17. 17.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)Google Scholar
  18. 18.
    Gugat, M., Hante, F.M., Hirsch-Dick, M., Leugering, G.: Stationary states in gas networks. Netw. Heterog. Media 10, 295–320 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gugat, M., Schultz, R., Wintergerst, D.: Networks of pipelines for gas with nonconstant compressibility factor: stationary states. Comput. Appl. Math. 37, 1066–1097 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)Google Scholar
  21. 21.
    Hante, F.M., Leugering, G., Martin, A., Schewe, L., Schmidt, M.: Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: from modeling to industrial applications. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds.) Industrial Mathematics and Complex Systems: Emerging Mathematical Models, Methods and Algorithms. Industrial and Applied Mathematics, pp 77–122. Springer Singapore, Singapore (2017)CrossRefGoogle Scholar
  22. 22.
    Joormann, I., Schmidt, M., Steinbach, M.C., Willert, B.M., et al.: What does “Feasible” mean?. In: Koch, T. (ed.) Evaluating Gas Network Capacities, pp. 211-232. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2015)Google Scholar
  23. 23.
    Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (eds.): Evaluating Gas Network Capacities. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2015)zbMATHGoogle Scholar
  24. 24.
    Kröner, A., Kunisch, K., Vexler, B.: Semismooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49, 830–858 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Leykekhman, D., Vexler, B.: A priori error estimates for three dimensional parabolic optimal control problems with pointwise control. SIAM J. Control Optim. 54, 2403–2435 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352, 4081–4106 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lurie, M.V.: Modeling of Oil Product and Gas Pipeline Transportation. Wiley-VCH, Weinheim (2008)CrossRefGoogle Scholar
  28. 28.
    Morse, A.S., Mayne, D.Q., Goodwin, G.C.: Applications of hysteresis switching in parameter adaptive control. IEEE Trans. Automat. Control 37, 1343–1354 (1992)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nagy, Z., Agachi, S., Allgöwer, F., Findeisen, R., Diehl, M., Bock, H.G., Schlöder, J.P.: The tradeoff between modelling complexity and real-time feasibility in nonlinear model predictive control. In: Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics, SCI (2002)Google Scholar
  30. 30.
    Petkov, P.H., Christov, N.D., Konstantinov, M.M.: Computational Methods for Linear Control Systems. Prentice Hall International Ltd., Hertfordshire (1991)zbMATHGoogle Scholar
  31. 31.
    Rose, D., Schmidt, M., Steinbach, M.C., Willert, B.M.: Computational optimization of gas compressor stations: MINLP models versus continuous reformulations. Math. Methods Oper. Res. 83, 409–444 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Schewe, L., Koch, T., Martin, A., Pfetsch, M.E.: Mathematical optimization for evaluating gas network capacities. In: Kock, T., et al. (eds.) Evaluating Gas Network Capacities. MOS-SIAM Series on Optimization, vol. 21, pp 87–102. SIAM, Philadelphia (2015)Google Scholar
  33. 33.
    Schmidt, M., Aßmann, D., Burlacu, R., Humpola, J., Joormann, I., Kanelakis, N., Koch, T., Oucherif, D., Pfetsch, M.E., Schewe, L., Schwarz, R., Sirvent, M.: GasLib—a library of gas network instances. Data 2017, 2 (2017). Google Scholar
  34. 34.
    Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks. Optim. Eng. 16, 131–164 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks: validation and results. Optim. Eng. 17, 437–472 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (1980)CrossRefGoogle Scholar
  37. 37.
    Stolwijk, J.J., Mehrmann, V.: Error analysis and model adaptivity for flows in gas networks. Anal. Stiintifice ale Univ. Ovidius Constanta. Ser. Mat Accepted for publication (2017)Google Scholar
  38. 38.
    Wilkinson, J.F., Holliday, D.V., Batey, E.H., Hannah, K.W.: Transient Flow in Natural Gas Transmission Systems. American Gas Association, New York (1964)Google Scholar
  39. 39.
    Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16, 1–31 (2005)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institut für MathematikBerlinGermany
  2. 2.Friedrich-Alexander-Universität Erlangen-Nürnberg, Discrete OptimizationErlangenGermany
  3. 3.Energie Campus NürnbergNürnbergGermany

Personalised recommendations