Skip to main content

Hiriart-Urruty–Phelps-Like Formula for the Subdifferential of Integral Sums


We provide subdifferential calculus rules for continuous sums parametrized in measurable spaces that use the approximate subdifferentials of the data functions. As in Hiriart-Urruty and Phelps (J. Funct. Anal. 118: 154–166, 1993) given for finite sums, the resulting formulas hold without any conditions of continuity type on the involved functions. All this analysis is done in the setting of locally convex Suslin spaces.

This is a preview of subscription content, access via your institution.


  1. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin Heidelberg (1977)

    Book  MATH  Google Scholar 

  2. Correa, R., Hantoute, A., López, M.A.: Weaker conditions for subdifferential calculus of convex functions. J. Funct. Anal. 271, 1177–1212 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  3. Diestel, J., Uhl, J.J. Jr.: Vector Measures. American Mathematical Society, Providence (1977)

    Book  MATH  Google Scholar 

  4. Hantoute, A., Jourani, A.: Subdifferential calculus of integral functions without qualification conditions. Submitted (2017)

  5. Correa, R., Hantoute, A., Jourani, A.: Characterizations of convex approximate subdifferential calculus in Banach spaces. Trans. Am. Math. Soc. 368, 4831–4854 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  6. Hantoute, A., López, M.A., Zălinescu, C.: Subdifferential calculus rules in convex analysis: a unifying approach via pointwise supremum functions. SIAM J. Optim. 19, 863–882 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  7. Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivar. Anal. 7, 149–182 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  8. Hiriart-Urruty, J.-B., Phelps, R.R.: Subdifferential calculus using ε-subdifferentials. J. Funct. Anal. 118, 154–166 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  9. Hiriart-Urruty, J.-B., Moussaoui, M., Seeger, A., Volle, M.: Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey. Nonlinear Anal. TMA 24, 1727–1754 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  10. Ioffe, A.D., Tikhomirov, V.M.: On the minimization of integral functionals. Funkt. Analiz. 3, 61–70 (1969)

    MathSciNet  MATH  Google Scholar 

  11. Ioffe, A.D.: Three theorems on subdifferentiation of convex integral functionals. J. Convex Anal. 13, 759–772 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Ioffe, A.D., Levin, V.L.: Subdifferentials of convex functions. Trudy Moskov. Mat. Obšč. 26, 3–73 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Ioffe, A. D., Tihomirov, V. M.: Theory of Extremal Problems. Studies in Mathematics and its Applications, vol. 6. North-Holland Publishing Co., Amsterdam-New York (1979)

  14. Jourani, A., Sanroma, M.: Variational sum of subdifferentials of convex functions. In: Garcia, C., Olive, C. (eds.) Proceedings of the IV Catalan Days of Applied Mathematics, pp. 71–79. Tarragona Press University, Tarragona (1998)

  15. Levin, V.L.: Convex integral functionals and the theory of lifting. Russ. Math. Surv. 30, 119–184 (1975)

    Article  MATH  Google Scholar 

  16. López, O., Thibault, L.: Sequential formula for subdifferential of integral sum of convex functions. J. Nonlinear Convex Anal. 9, 295–308 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Mordukhovich, B.S., Sagara, N.: Subdifferentials of nonconvex integral functionals in Banach spaces with applications to stochastic dynamic programming. J. Convex Anal. (to appear) (2018)

  18. Rockalellar, R.T.: Integrals which are convex functionals. Pac. J. Math. 24, 525–539 (1968)

    MathSciNet  Article  Google Scholar 

  19. Rockalellar, R.T.: Integrals which are convex functionals II. Pac. J. Math. 39, 439–469 (1971)

    MathSciNet  Article  Google Scholar 

  20. Rockalellar, R.T.: Integral functionals, normal integrands and measurable selections. In: Gossez, J.P., Dozo, E.J.L., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, vol. 543, pp. 157–207. Springer (1976)

  21. Thibault, L.: Sequential convex subdifferential calculus and sequential Lagrange multipliers. SIAM J. Control Optim. 35, 1434–1444 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  22. Valle, C., Zălinescu, C.: Series of convex functions: subdifferential, conjugate and applications to entropy minimization. J. Convex Anal. 23, 1137–1160 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co. Pte. Ltd., Singapore (2002)

    Book  MATH  Google Scholar 

  24. Zheng, X.Y.: A series of convex functions on a Banach space. Acta Math. Sinica 14, 77–84 (1998)

    MathSciNet  Article  MATH  Google Scholar 

Download references


We are very grateful to an anonymous referee for his/her suggestions and comments.


This work is partially supported by CONICYT grant Fondecyt 1151003, Conicyt-Redes no. 150040, and Mathamsud 17-MATH-06.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Hantoute.

Additional information

Dedicated to Prof. Michel Théra for his 70th birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hantoute, A., Jourani, A. Hiriart-Urruty–Phelps-Like Formula for the Subdifferential of Integral Sums. Vietnam J. Math. 46, 391–405 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Integral sums
  • Convex normal integrands
  • ε-subdifferential
  • Subdifferential calculus

Mathematics Subject Classification (2010)

  • 26B05
  • 26J25
  • 49H05