Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, Orlando (1985)
MATH
Google Scholar
Barro, M., Ouédraogo, A., Traoré, S.: On uncertain conical convex optimization problems. Pac. J. Optim. 13, 29–42 (2017)
MathSciNet
Google Scholar
Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37, 1–6 (2009)
MathSciNet
Article
MATH
Google Scholar
Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton U.P., Princeton (2009)
Book
MATH
Google Scholar
Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)
MathSciNet
Article
MATH
Google Scholar
Bolintinéanu, S.: Vector variational principles towards asymptotically well behaved vector convex functions. In: Nguyen, V.H., Strodiot, J.J., Tossings, P. (eds.) Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 481, pp 55–68. Springer, Berlin (2000)
Bolintinéanu, S.: Vector variational principles; ε-efficiency and scalar stationarity. J. Convex Anal. 8, 71–85 (2001)
MathSciNet
MATH
Google Scholar
Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)
MATH
Google Scholar
Boţ, R.I., Grad, S.M.: Duality for vector optimization problems via a general scalarization. Optimization 60, 1269–1290 (2011)
MathSciNet
Article
MATH
Google Scholar
Boţ, R.I., Jeyakumar, V., Li, G.Y.: Robust duality in parametric convex optimization. Set-Valued Var. Anal. 21, 177–189 (2013)
MathSciNet
Article
MATH
Google Scholar
Boţ, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin (2009)
MATH
Google Scholar
Dinh, N., Goberna, M.A., Long, D.H., López, M.A.: New farkas-type results for vector-valued functions: a non-abstract approach (submitted)
Dinh, N., Goberna, M.A., López, M.A., Mo, T.H.: Farkas-type results for vector-valued functions with applications. J. Optim. Theory Appl. 173, 357–390 (2017)
MathSciNet
Article
MATH
Google Scholar
Dinh, N., Goberna, M.A., López, M.A., Mo, T.H.: Robust optimization revisited via robust vector Farkas lemmas. Optimization 66, 939–963 (2017)
MathSciNet
Article
MATH
Google Scholar
Dinh, N., Goberna, M.A., López, M.A., Volle, M.: A unifying approach to robust convex infinite optimization duality. J. Optim. Theory Appl. 174, 650–685 (2017)
MathSciNet
Article
MATH
Google Scholar
Dinh, N., Mo, T.H., Vallet, G., Volle, M.: A unified approach to robust Farkas-type results with applications to robust optimization problems. SIAM J. Optim. 27, 1075–1101 (2017)
MathSciNet
Article
MATH
Google Scholar
Ernst, E., Volle, M.: Zero duality gap and attainment with possibly nonconvex data. J. Convex Anal. 23, 615–629 (2016)
MathSciNet
MATH
Google Scholar
Grad, S.-M., Pop, E.-L.: Vector duality for convex vector optimization problems by means of the quasi-interior of the ordering cone. Optimization 63, 21–37 (2014)
MathSciNet
Article
MATH
Google Scholar
Grad, S.-M.: Vector Optimization and Monotone Operators via Convex Duality: Recent Advances. Springer, Cham (2015)
Book
MATH
Google Scholar
Grad, S.-M.: Closedness type regularity conditions in convex optimization and beyond. Front. Appl. Math. Stat. 2, 14 (2016). https://doi.org/10.3389/fams.2016.00014
Article
Google Scholar
Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235, 471–483 (2014)
MathSciNet
Article
MATH
Google Scholar
Goberna, M.A., Jeyakumar, V., Li, G., López, M.A.: Robust linear semi-infinite programming duality under uncertainty. Math. Program. Ser. B 139, 185–203 (2013)
MathSciNet
Article
MATH
Google Scholar
Goberna, M.A., Jeyakumar, V., Li, G., Vicente-Pérez, J.: Robust solutions of multi-objective linear semi-infinite programs under constraint data uncertainty. SIAM J. Optim. 24, 1402–1419 (2014)
MathSciNet
Article
MATH
Google Scholar
Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Theory. Kluwer Academic Publishers, London (1997)
Book
MATH
Google Scholar
Jeyakumar, V., Li, G., Wang, J.H.: Some robust convex programs without a duality gap. J. Convex Anal. 20, 377–394 (2013)
MathSciNet
MATH
Google Scholar
Jeyakumar, V., Li, G.Y.: Strong duality in robust convex programming: complete characterizations. SIAM J. Optim. 20, 3384–3407 (2010)
MathSciNet
Article
MATH
Google Scholar
Jeyakumar, V., Song, W., Dinh, N., Lee, G.M.: Stable strong duality in convex optimization. Applied Mathematics Report AMR 05/22. University of New South Wales (2005)
Khan, A., Tammer, C.h., Zălinescu, C.: Set-Valued Optimization: an Introduction with Applications. Springer, Berlin (2015)
Book
MATH
Google Scholar
Kuroiwa, D.: The natural criteria in set-valued optimization. Sūrikaisekikenkyūsho Kōkyūroku 1031, 85–90 (1998)
MathSciNet
MATH
Google Scholar
Lee, J.H., Lee, G.M.: On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann. Oper Res. https://doi.org/10.1007/s10479-016-2363-5 (2016)
Löhne, A., Tammer, C.: A new approach to duality in vector optimization. Optimization 56, 221–239 (2007)
MathSciNet
Article
MATH
Google Scholar
Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)
Book
Google Scholar
Tanino, T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167, 84–97 (1992)
MathSciNet
Article
MATH
Google Scholar