Skip to main content

On Semicoercive Variational-Hemivariational Inequalities—Existence, Approximation, and Regularization

Abstract

In this paper, we are concerned with semicoercive variational-hemivariational inequalities that encompass nonlinear semicoercive monotone variational inequalities (VIs) and pseudomonotone VIs in reflexive Banach spaces and hemivariational inequalities (HVIs) in function spaces. We present existence, approximation, and regularization results. Our approach to our existence result is based on recession arguments. We employ regularization techniques of nondifferentiable optimization to smooth the jumps in the hemivariational term. We treat nonconforming finite element approximation via Mosco convergence. As an example, we consider a semicoercive unilateral boundary value problem with nonmonotone boundary conditions that models a unilateral contact problem for a nonlinear elastic body under a nonmonotone friction law.

This is a preview of subscription content, access via your institution.

References

  1. Adly, S., Goeleven, D., Théra, M.: Recession mappings and noncoercive variational inequalities. Nonlinear Anal. TMA 26, 1573–1603 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  2. Adly, S., Théra, M., Ernst, E.: Stability of the solution set of non-coercive variational inequalities. Commun. Contemp. Math. 4, 145–160 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  3. Adly, S.: Stability of linear semi-coercive variational inequalities in Hilbert spaces: application to the Signorini-Fichera problem. J. Nonlinear Convex Anal. 7, 325–334 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2006)

  5. Brézis, H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier. 18, 115–175 (1968)

    Article  MATH  Google Scholar 

  6. Chadli, O., Chbani, Z., Riahi, H.: Some existence results for coercive and noncoercive hemivariational inequalities. Appl. Anal. 69, 125–131 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  7. Chadli, O., Chbani, Z., Riahi, H.: Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete Contin. Dyn. Syst. 5, 185–196 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Chadli, O., Schaible, S., Yao, J.C.: Regularized equilibrium problems with application to noncoercive hemivariational inequalities. J. Optim. Theory Appl. 121, 571–596 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  9. Chadli, O., Liu, Z., Yao, J.C.: Applications of equilibrium problems to a class of noncoercive variational inequalities. J. Optim. Theory Appl. 132, 89–110 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. Clarke, F: Optimization and Nonsmooth Analysis. John Wiley, New York (1983)

    MATH  Google Scholar 

  12. Costea, N., Rǎdulescu, V.: Hartman–Stampacchia results for stably pseudomonotone operators and non-linear hemivariational inequalities. Appl. Anal. 89, 175–188 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  13. Costea, N., Matei, A.: Contact models leading to variational-hemivariational inequalities. J. Math. Anal. Appl. 386, 647–660 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  14. Costea, N., Varga, C.: Systems of nonlinear hemivariational inequalities and applications. Topol. Methods Nonlinear Anal. 41, 39–65 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Costea, N., Csirik, M., Varga, C: Weak solvability via bipotential method for contact models with nonmonotone boundary conditions. Z. Angew. Math. Phys. 66, 2787–2806 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  16. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Approximation & Optimization, vol. 7. Peter Lang, Frankfurt am Main (1995)

  17. Demyanov, V.F., Stavroulakis, G.E., Polyakova, L.N., Panagiotopoulos, P.D.: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics. Nonconvex Optimization and its Applications, vol. 10. Kluwer Academic Publishers, Dordrecht (1996)

  18. Dinca, G., Panagiotopoulos, P.D., Pop, G.: An existence result on noncoercive hemivariational inequalities. Ann. Fac. Sci. Toulouse Math. 6, 609–632 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  19. Fichera, G.: Boundary value problems of elasticity with unilateral constraints. In: Flügge, S (ed.) Handbuch der Physik – Encyclopedia of Physics, Band VI a/2 Festkörpermechanik II, pp. 391–424. Springer, Berlin (1972)

  20. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Reprint of the 1984 original. Springer-Verlag, Berlin (2008)

    Google Scholar 

  21. Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, vol. II. Unilateral Problems. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  22. Goeleven, D., Théra, M.: Semicoercive variational hemivariational inequalities. J. Glob. Optim. 6, 367–381 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  23. Goeleven, D.: On Noncoercive Variational Problems and Related Results. Pitman Research Notes in Mathematics, vol. 357. Longman, Harlow (1996)

    Google Scholar 

  24. Goeleven, D., Gwinner, J.: On semicoerciveness, a class of variational inequalities, and an application to von Kármán plates. Math. Nachr. 244, 89–109 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  25. Gwinner, J.: A note on pseudomonotone functions, regularization, and relaxed coerciveness. Nonlinear Anal. 30, 4217–4227 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  26. Gwinner, J.: Discretization of semicoercive variational inequalities. Aequ. Math. 42, 72–79 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  27. Gwinner, J.: A discretization theory for monotone semicoercive problems and finite element convergence for p-Harmonic Signorini problems. Z. Angew. Math. Mech. 74, 417–427 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  28. Gwinner, J.: Finite-element convergence for contact problems in plane linear elastostatics. Q. Appl. Math. 50, 11–25 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  29. Gwinner: J.: hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  30. Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. PhD Thesis. Universität Mannheim, Haag + Herchen Verlag. Frankfurt (1978)

  31. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  32. Hess, P.: On semi-coercive nonlinear problems. Indiana Univ. Math. J. 23, 645–654 (1974)

    MathSciNet  Article  MATH  Google Scholar 

  33. Jeggle, H.: Nichtlineare Funktionalanalysis. Teubner Stuttgart, Wiesbaden (1979)

    Book  MATH  Google Scholar 

  34. Lahmdani, A., Chadli, O., Yao, J.C.: Existence of solutions for noncoercive hemivariational inequalities by an equilibrium approach under pseudomonotone perturbation. J. Optim. Theory Appl. 160, 49–66 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  35. Liu, Z.-H.: Elliptic variational hemivariational inequalities. Appl. Math. Lett. 16, 871–876 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  36. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, New York (2013)

    Book  MATH  Google Scholar 

  37. Naniewicz, Z., Panagiotopoulos, P. D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    MATH  Google Scholar 

  38. Naniewicz, Z.: Semicoercive variational-hemivariational inequalities with unilateral growth conditions. J. Glob. Optim. 17, 317–337 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  39. Ovcharova, N., Gwinner, J.: Semicoercive variational inequalities: from existence to numerical solution of nonmonotone contact problems. J. Optim. Theory Appl. 171, 422–439 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  40. Ovcharova, N.: Regularization Methods and Finite Element Approximation of Hemivariational Inequalities with Applications to Nonmonotone Contact Problems. PhD Thesis. Universität der Bundeswehr München. Cuvillier Verlag, Göttingen (2012)

    Google Scholar 

  41. Ovcharova, N., Gwinner, J.: A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. J. Optim. Theory Appl. 162, 754–778 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  42. Panagiotopoulos, P.D.: Hemivariational Inequalities: Applications in Mechanics and Engineering. Springer, Berlin Heidelberg (1993)

    Book  MATH  Google Scholar 

  43. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Application: Convex and Nonconvex Energy Functions. Basel, Birkhäuser (1998)

    Google Scholar 

  44. Panagiotopoulos, P. D.: Coercive and semicoercive hemivariational inequalities. Nonlinear Anal. 16, 209–231 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  45. Penot, J.-P.: Noncoercive problems and asymptotic conditions. Asymptot. Anal. 49, 205–215 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Schatzman, M.: Problèmes aux limites non linéaires, non coercifs. Ann. Scuola Norm. Sup. Pisa 27(3), 641–686 (1973)

    MathSciNet  MATH  Google Scholar 

  47. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin Heidelberg (2004)

    Book  MATH  Google Scholar 

  48. Signorini, A.: Sopra alcune questioni di elastostatica. Atti Soc. Ital. Progr. Sci. 21, 143–148 (1933)

    MATH  Google Scholar 

  49. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  50. Stampacchia, G.: Variational inequalities. In: Ghizzetti, A (ed.) Theory and Applications of Monotone Operators, pp. 101–192. Edizione Oderisi, Gubbio (1969)

  51. Tang, G.-J., Huang, N.-J.: Existence theorems of the variational-hemivariational inequalities. J. Glob. Optim. 56, 605–622 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  52. Tomarelli, F.: Noncoercive variational inequalities for pseudomonotone operators. Rend. Sem. Mat. Fis. Milano. 61, 141–183 (1991)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Gwinner.

Additional information

Dedicated to Professor Michel Théra on the occasion of his 70th birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chadli, O., Gwinner, J. & Ovcharova, N. On Semicoercive Variational-Hemivariational Inequalities—Existence, Approximation, and Regularization. Vietnam J. Math. 46, 329–342 (2018). https://doi.org/10.1007/s10013-018-0282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-018-0282-2

Keywords

  • Semicoercivity
  • Pseudomonotone bifunction
  • Hemivariational inequality
  • Plus function
  • Regularization by smoothing
  • Mosco convergence
  • Unilateral contact
  • Nonmonotone contact

Mathematics Subject Classification (2010)

  • 49J40
  • 74M15
  • 74S05