Apetrii, M., Durea, M., Strugariu, R.: On subregularity properties of set-valued mappings. Set-Valued Var. Anal. 21, 93–126 (2013)
MathSciNet
Article
MATH
Google Scholar
Borwein, J. M., Jofré, A.: A nonconvex separation property in Banach spaces. Math. Methods Oper. Res. 48, 169–179 (1998)
MathSciNet
Article
MATH
Google Scholar
Borwein, J. M., Zhu, Q. J.: Techniques of Variational Analysis. Springer, New York (2005)
MATH
Google Scholar
Cibulka, R., Fabian, M., Kruger, A. Y.: On semiregularity of mappings. arXiv:1711.04420 (2017)
Dontchev, A. L., Rockafellar, R. T.: Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014)
MATH
Google Scholar
Dubovitskii, A.Ya., Milyutin, A.A.: Extremum problems in the presence of restrictions. USSR Comp. Maths. Math. Phys. 5, 1–80 (1965)
Article
MATH
Google Scholar
Fabian, M.: Subdifferentials, local ε-supports and Asplund spaces. J. Lond. Math. Soc. s2-34, 568–576 (1986)
MathSciNet
Article
MATH
Google Scholar
Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carol. 30, 51–56 (1989)
MathSciNet
MATH
Google Scholar
Ioffe, A. D.: Fuzzy principles and characterization of trustworthiness. Set-Valued Anal. 6, 265–276 (1998)
MathSciNet
Article
MATH
Google Scholar
Ioffe, A. D.: Metric regularity and subdifferential calculus. Russ. Math. Surveys 55, 501–558 (2000)
MathSciNet
Article
MATH
Google Scholar
Ioffe, A. D.: Transversality in variational analysis. J. Optim. Theory Appl. 174, 343–366 (2017)
MathSciNet
Article
MATH
Google Scholar
Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications Nonconvex. Optimization and its Applications, vol. 60. Kluwer Academic Publishers, Dordrecht (2002)
MATH
Google Scholar
Kruger, A.Y.: Generalized differentials of nonsmooth functions. VINITI no. 1332-81. Minsk, 67 pp. (In Russian). Available at: https://asterius.ballarat.edu.au/akruger/research/publications.html (1981)
Kruger, A.Y.: ε-semidifferentials and ε-normal elements. VINITI no. 1331-81. Minsk, 76 pp. (In Russian). Available at https://asterius.ballarat.edu.au/akruger/research/publications.html (1981)
Kruger, A. Y.: Generalized differentials of nonsmooth functions and necessary conditions for an extremum. Sibirsk. Mat. Zh. 26, 78–90 (1985). In Russian; English transl.: Sib. Math. J. 26, 370–379 (1985)
MathSciNet
MATH
Google Scholar
Kruger, A.Y.: About extremality of systems of sets. Dokl. Nats. Akad. Nauk Belarusi 42, 24–28 (1998). In Russian. Available at https://asterius.ballarat.edu.au/akruger/research/publications.html
MathSciNet
MATH
Google Scholar
Kruger, A.Y.: Strict (ε,δ)-semidifferentials and extremality of sets and functions. Dokl. Nats. Akad. Nauk Belarusi 44, 19–22 (2000). In Russian. Available at https://asterius.ballarat.edu.au/akruger/research/publications.html
MathSciNet
MATH
Google Scholar
Kruger, A. Y.: Strict (ε,δ)-subdifferentials and extremality conditions. Optimization 51, 539–554 (2002)
MathSciNet
Article
MATH
Google Scholar
Kruger, A. Y.: On Fréchet subdifferentials. J. Math. Sci. 116, 3325–3358 (2003)
MathSciNet
Article
MATH
Google Scholar
Kruger, A. Y.: Weak stationarity: Eliminating the gap between necessary and sufficient conditions. Optimization 53, 147–164 (2004)
MathSciNet
Article
MATH
Google Scholar
Kruger, A. Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1, 101–126 (2005)
MathSciNet
MATH
Google Scholar
Kruger, A. Y.: About regularity of collections of sets. Set-Valued Anal. 14, 187–206 (2006)
MathSciNet
Article
MATH
Google Scholar
Kruger, A. Y.: About stationarity and regularity in variational analysis. Taiwan. J. Math. 13, 1737–1785 (2009)
MathSciNet
Article
MATH
Google Scholar
Kruger, A. Y., López, M. A.: Stationarity and regularity of infinite collections of sets. J. Optim. Theory Appl. 154, 339–369 (2012)
MathSciNet
Article
MATH
Google Scholar
Kruger, A. Y., Luke, D. R., Thao, N. H.: About subtransversality of collections of sets. Set-Valued Var. Anal. 25, 701–729 (2017)
MathSciNet
Article
MATH
Google Scholar
Kruger, A.Y., Mordukhovich, B.S.: Extremal points and the Euler equation in nonsmooth optimization problems. Dokl. Akad. Nauk BSSR 24(8), 684–687 (1980). In Russian. Available at https://asterius.ballarat.edu.au/akruger/research/publications.html
MathSciNet
MATH
Google Scholar
Kruger, A.Y., Mordukhovich, B.S.: Generalized normals and derivatives and necessary conditions for an extremum in problems of nondifferentiable programming. II. VINITI no. 494-80, 60 pp. Minsk (1980). In Russian. Available at https://asterius.ballarat.edu.au/akruger/research/publications.html
Kruger, A. Y., Thao, N. H.: About uniform regularity of collections of sets. Serdica Math. J. 39, 287–312 (2013)
MathSciNet
MATH
Google Scholar
Kruger, A. Y., Thao, N. H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164, 41–67 (2015)
MathSciNet
Article
MATH
Google Scholar
Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. Grundlehren der Mathematischen Wissenschaften, vol. 330. Springer, Berlin Heidelberg (2006)
Google Scholar
Mordukhovich, B. S., Shao, Y.: Extremal characterizations of Asplund spaces. Proc. Am. Math. Soc. 124, 197–205 (1996)
MathSciNet
Article
MATH
Google Scholar
Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, 2nd edn., vol. 1364. Springer-Verlag, Berlin Heidelberg (1993)
Rockafellar, R. T., Wets, R. J. -B.: Variational Analysis. Springer, Berlin Heidelberg (1998)
Book
MATH
Google Scholar
Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28, 96–115 (1984)
MathSciNet
Article
MATH
Google Scholar
Zheng, X. Y., Ng, K. F.: The Lagrange multiplier rule for multifunctions in Banach spaces. SIAM J. Optim. 17, 1154–1175 (2006)
MathSciNet
Article
MATH
Google Scholar
Zheng, X. Y., Ng, K. F.: A unified separation theorem for closed sets in a Banach space and optimality conditions for vector optimization. SIAM J. Optim. 21, 886–911 (2011)
MathSciNet
Article
MATH
Google Scholar
Zheng, X. Y., Yang, Z., Zou, J.: Exact separation theorem for closed sets in Asplund spaces. Optimization 66, 1065–1077 (2017)
MathSciNet
Article
MATH
Google Scholar