Vietnam Journal of Mathematics

, Volume 45, Issue 1–2, pp 221–240 | Cite as

A Multiscale Modeling Approach to Glioma Invasion with Therapy

  • Alexander HuntEmail author
  • Christina Surulescu


We consider the multiscale model for glioma growth introduced in (Math. Biosci. Eng. 71: 443–460, 2016) to accommodate tumor heterogeneity by relying on the go-or-grow dichotomy and extend it to account for therapy effects. Thereby, three treatment strategies involving surgical resection, radio-, and chemotherapy are compared for their efficiency. The chemotherapy relies on inhibiting the binding of cell surface receptors to the surrounding tissue, which impairs both migration and proliferation. The multiscale features of our model allow to connect subcellular level information to individual cell dynamics and—upon scaling—carry over such information to the population level on which a tumor is clinically observed. This makes it particularly appropriate for investigating the effects of therapy, as both ionizing radiation and chemotherapeutic agents act on the subcellular level, but their outcome is assessed on the macroscopic scale. The model includes patient-specific brain structure available in the form of DTI data and the numerical simulations are performed relying on these.


Multiscale model Glioma invasion Cancer therapy approaches Kinetic transport equations Macroscopic scaling 

Mathematics Subject Classification (2000)

92C50 35Q92 92C17 


  1. 1.
    Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single and multiple shell Q-ball imaging with constant solid angle. Magn. Reson. Med. 64, 554–566 (2010)Google Scholar
  2. 2.
    Baldock, A. L., Rockne, R. C., Boone, A. D., Neal, M. L., Hawkins-Daarud, A., et al.: From patient-specific mathematical neuro-oncology to precision medicine. Front. Oncol. 3, 62 (2013)CrossRefGoogle Scholar
  3. 3.
    Bastian, P., Blatt, M.: On the generic parallellisation of iterative solvers for the finite element method. Int. J. Comput. Sci. Eng. 4, 56–69 (2008)CrossRefGoogle Scholar
  4. 4.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82, 103–119 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing 82, 121–138 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Besserer, J., Schneider, U.: Track-event theory of cell survival with second-order repair. Radiat. Environ. Biophys. 54, 167–174 (2015)CrossRefGoogle Scholar
  7. 7.
    Blatt, M., Bastian, P.: The iterative solver template library. In: Kågström, B. et al. (eds.) Applied Parallel Computing. State of the Art in Scientific Computing. Lecture Notes in Computer Science, vol. 4699, pp 666–675. Springer, Berlin-Heidelberg (2007)Google Scholar
  8. 8.
    Bloy, L., Verma, R.: On Computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008. Lecture Notes in Computer Science, vol. 5241, pp 1–8. Springer, Berlin-Heidelberg (2008)Google Scholar
  9. 9.
    Böttger, K., Hatzikirou, H., Chauviere, A., Deutsch, A.: Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. Math. Model. Nat. Phenom. 7, 105–135 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brenner, D. J., Hlatky, L. R., Hall, E. J., Sachs, R. K.: A convenient extension of the linear-quadratic model to include redistribution and reoxigenation. Int. J. Rad. Oncol. Biol. Phys. 32, 379–390 (1995)CrossRefGoogle Scholar
  11. 11.
    Chamberlain, M. C., Cloughsey, T., Reardon, D. A., Wen, P. Y.: A novel treatment for glioblastoma. Expert. Rev. Neurother. 12, 421–435 (2012)CrossRefGoogle Scholar
  12. 12.
    Chicoine, M. R., Silbergeld, D. L.: Assessment of brain tumor cell motility in vivo and in vitro. J. Neurosurg. 82, 615–622 (1995)CrossRefGoogle Scholar
  13. 13.
    Cordes, N., Seidler, J., Durzok, R., Geinitz, H., Brakebusch, C.: Beta1-integrin-mediated signaling essenially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25, 1378–1390 (2006)CrossRefGoogle Scholar
  14. 14.
    D’Abaco, G., Kaye, A.: Integrins: molecular determinants of glioma invasion. J. Clin. Neurosci. 14, 1041–1048 (2007)CrossRefGoogle Scholar
  15. 15.
    Demuth, T., Berens, M. E.: Molecular mechanisms of glioma cell invasion and migration. J. Neuro-Oncol. 70, 217–228 (2004)CrossRefGoogle Scholar
  16. 16.
    Desgrosellier, J. S., Cheresh, D. A.: Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010)CrossRefGoogle Scholar
  17. 17.
    Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts; a multiscale DTI-based model. J. Math. Biol. 71, 551–582 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Engwer, C., Hunt, A., Surulescu, C.: Effective equations for anisotropic glioma spread with proliferation: a multiscale approach and comparisons with previous settings. IMA J. Math. Med Biol (2015)Google Scholar
  19. 19.
    Engwer, C., Knappitsch, M., Surulescu, C.: A multiscale model for glioma spread including cell-tissue interactions and proliferation. Math. Biosci. Eng. 13, 443–460 (2016)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)zbMATHGoogle Scholar
  21. 21.
    Fowler, J.: The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694 (1989)CrossRefGoogle Scholar
  22. 22.
    Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., et al.: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007)CrossRefGoogle Scholar
  23. 23.
    Giese, A., Bjerkvig, R., Behrens, M. E., Westphal, M.: Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21, 1624–1636 (2003)CrossRefGoogle Scholar
  24. 24.
    Giese, A., Kluwe, L., Meissner, H., Michael, E., Westphal, M.: Migration of human glioma cells on myelin. Neurosurgery 38, 755–764 (1996)CrossRefGoogle Scholar
  25. 25.
    Giese, A., Loo, M. A., Tran, N., Haskett, D., Coons, S., Berens, M.: Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer 67, 275–282 (1996)CrossRefGoogle Scholar
  26. 26.
    Giese, A., Westphal, M.: Glioma invasion in the central nervous system. Neurosurgery 39, 235–252 (1996)CrossRefGoogle Scholar
  27. 27.
    Guo, W., Giancotti, F. G.: Integrin signaling during tumor progression. Nat. Rev. 5, 816–826 (2004)CrossRefGoogle Scholar
  28. 28.
    Hall, E. J., Giaccia, A. J.: Radiobiology for the Radiologist. Lipincott Williams & Wilkins, Philadelphia (2006)Google Scholar
  29. 29.
    Hatzikirou, H., Basanta, D., Simon, M., Schaller, K., Deutsch, A.: Go or grow: the key to the emergence of invasion in tumour progression?. Math. Med. Biol. 29, 49–65 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hillen, T.: M 5 Mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53, 585–616 (2006)CrossRefzbMATHGoogle Scholar
  31. 31.
    Hillen, T., Painter, K. J.: Transport and anisotropic diffusion models for movement in oriented habitats. In: Lewis, M., Maini, P., Petrovskii, S. (eds.) Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics, vol. 2071, pp 177–233. Springer, Berlin-Heidelberg (2013)Google Scholar
  32. 32.
    Hood, J. D., Cheresh, D. A.: Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100 (2002)CrossRefGoogle Scholar
  33. 33.
    Huttenlocher, A., Horwitz, A. R.: Integrins in cell migration. Cold Spring Harb. Perspect. Biol. 3, 1–16 (2011)CrossRefGoogle Scholar
  34. 34.
    Jones, D. K., Knöschke, T. R., Turner, R.: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73, 239–254 (2013)CrossRefGoogle Scholar
  35. 35.
    Kirkpatrick, J. P., Meyer, J. J., Marks, L. B.: The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin. Radiat. Oncol. 18, 240–243 (2008)CrossRefGoogle Scholar
  36. 36.
    Konukoglu, E., Clatz, O., Delingette, H., Ayache, N.: Personalization of reaction-diffusion tumor growth models in MR images: application to brain gliomas characterization and radiotherapy planning . In: Deisboeck, T.S., Stamatakos, G. (eds.) Multiscale Cancer Modeling. Chapman & Hall/CRC Mathematical and Computational Biology, pp. 385–406. CRC Press (2010)Google Scholar
  37. 37.
    Konukoglu, E., Clatz, O., Menze, B. H., Weber, M. -A., Stieltjes, B., Mandonnet, E., Delingette, H., Ayache, N.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans. Med. Imaging 29, 77–95 (2010)CrossRefGoogle Scholar
  38. 38.
    Lai, R., Hershman, D. L., Doan, T., Neugut, A. I.: The timing of cranial radiation in elderly patients with newly diagnosed glioblastoma multiforme. Neuro Oncol. 12, 190–198 (2010)CrossRefGoogle Scholar
  39. 39.
    Lang, F. F., Gilbert, M. R.: Diffusely infiltrative low-grade gliomas in adults. J. Clin. Oncol. 10, 1236–1245 (2006)CrossRefGoogle Scholar
  40. 40.
    Lauffenburger, D. A., Lindermann, J. L.: Receptors. Models for Binding, Trafficking and Signaling. Oxford University Press, Oxford (1993)Google Scholar
  41. 41.
    Lefrank, F., Brotchi, J., Kiss, R.: Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol. 23, 2411–2422 (2005)CrossRefGoogle Scholar
  42. 42.
    Legate, K. R., Wickström, S. A., Fässler, R.: Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23, 397–418 (2009)CrossRefGoogle Scholar
  43. 43.
    Leitinger, B., McDowall, A., Stanley, P., Hogg, N.: The regulation of integrin function by Ca 2+. Biochim. Biophys. Acta, Mol. Cell Res. 1498, 91–98 (2000)CrossRefGoogle Scholar
  44. 44.
    Lorenz, T., Surulescu, C.: On a class of multiscale cancer cell migration models: well-posedness in less regular function spaces. Math. Models Methods Appl. Sci. 24, 2383 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Mangum, T., Nakano, I.: Glioma stem cells and their therapy resistance. J. Carcinog. Mutagene, S1–002 (2011). doi: 10.4172/2157-2518.S1-002
  46. 46.
    Mardia, K. V., Jupp, P. E.: Directional Statistics. John Wiley & Sons, Chichester (1999)CrossRefzbMATHGoogle Scholar
  47. 47.
    Meral, G., Stinner, C., Surulescu, C.: A multiscale model for acid-mediated tumor invasion: therapy approaches. J. Coupled Syst. Multiscale Dyn. 3, 135–142 (2015)CrossRefzbMATHGoogle Scholar
  48. 48.
    Moschos, S. J., Drogowski, L. M., Reppert, S. I., Kirkwood, J. M.: Integrins and cancer. Oncology 21, 13–20 (2007)Google Scholar
  49. 49.
    Oppenheimer-Marks, N., Lipsky, P. E.: Adhesion molecules and the regulation of the migration of lymphocytes. In: Hamann, A. (ed.) Adhesion Molecules and Chemokines in Lymphocyte Trafficking, pp 55–88. Harwood Acad. Publ., Amsterdam (1997)Google Scholar
  50. 50.
    Painter, K. J., Hillen, T.: Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion. J. Theor. Biol. 323, 25–39 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Preusser, M., de Ribaupierre, S., Wöhrer, A., Erridge, S. C., Hegi, M., Weller, M., Stupp, R.: Current concepts and management of glioblastoma. Ann. Neurol. 70, 9–21 (2011)CrossRefGoogle Scholar
  52. 52.
    Price, A. J., Jena, R., Burnet, N. G., Hutchinson, P. J., Dean, A. F., Peña, A., Pickard, J. D., Carpenter, T. A., Gillard, J. H.: Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am. J. Neuroradiol. 27, 1969–1974 (2006)Google Scholar
  53. 53.
    Reiser, M., Kuhn, F. -P., Debus, J.: Radiologie. Thieme (2011)Google Scholar
  54. 54.
    Rockne, R., Alvord Jr., E. C., Rockhill, J. K., Swanson, K. R.: A mathematical model for brain tumor response to radiation therapy. J. Math. Biol. 58, 561–578 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Rockne, R. C., Trister, A. D., Jacobs, J., Hawkins-Daarud, A. J., Neal, M. L., Hendrickson, K., Mrugala, M. M., Rockhill, J. J., Kinahan, P., Krohn, K. A., Swanson, K. R.: A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18f-FMISO-PET. J. R. Soc. Interface 12, 1–10 (2015)CrossRefGoogle Scholar
  56. 56.
    Ruzicka, M.: Nichtlineare Funktionalanalysis. Eine Einführung. Springer, Berlin-Heidelberg (2004)Google Scholar
  57. 57.
    Sachs, R. K., Brenner, D. J.: The mechanistic basis of the linear-quadratic model. Med. Phys. 25, 2071–2073 (1998)CrossRefGoogle Scholar
  58. 58.
    Sanderson, C.: Armadillo: an Open Source C++ Linear Algebra Library for fast prototyping and computationally intensive experiments. Technical Report, NICTA (2010)Google Scholar
  59. 59.
    Sathornsumetee, S., Reardon, D. A., Desjardins, A., Quinn, J. A., Vredenburgh, J. J., Rich, J. N.: Molecularly targeted therapy for malignant glioma. Cancer 110, 13–24 (2007)CrossRefGoogle Scholar
  60. 60.
    Scarabino, E. (ed.): Imaging Gliomas after Treatment. A Ase-Based Atlas. Springer-Verlag, Mailand (2012)Google Scholar
  61. 61.
    Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. AMS, Providence (1997)Google Scholar
  62. 62.
    Steel, G. G.: Basic Clinical Radiobiology. Arnold, New York (2002)Google Scholar
  63. 63.
    Steinbach, J., Weller, M.: Apoptosis in gliomas: molecular mechanisms and therapeutic implications. J. Neuro-Oncol. 70, 245–254 (2004)CrossRefGoogle Scholar
  64. 64.
    Stinner, C., Surulescu, C., Meral, G.: A multiscale model for pH-tactic invasion with time-varying carrying capacities. IMA J. Appl. Math. 80, 1300–1321 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Stinner, C., Surulescu, C., Uatay, A.: Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Math. Mod. Meth. Appl. Sci. (in print)Google Scholar
  66. 66.
    Stupp, R., Ruegg, C.: Integrin inhibitors reaching the clinic. J. Clin. Oncol. 25, 1637–1638 (2007)CrossRefGoogle Scholar
  67. 67.
    Uhm, J. H., Gladson, C. L., Rao, J. S.: The role of integrins in the malignant phenotype of gliomas. Front. Biosci. 4, 188–199 (1999)CrossRefGoogle Scholar
  68. 68.
    Wagner, S., Rampersad, S. M., Aydin, Ü., Vorwerk, J., Oostendorp, T. F., Neuling, T., Herrmann, C. S., Stegeman, D. F., Wolters, C. H.: Investigation of tDCS volume conduction effects in a highly realistic head model. J. Neural Eng. 11, 016002 (2014)CrossRefGoogle Scholar
  69. 69.
    Woulters, B. G., Brown, J. M.: Cells at intermediate oxygen levels can be more important than the hypoxic fraction in determining tumor response to fractionated radiotherapy. Radiat. Res. 147, 541–550 (1997)CrossRefGoogle Scholar
  70. 70.
    Zhan, L., Leow, A. D., Zhu, S., Barysheva, M., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Wright, M. J., Thompson, P. M.: A novel measure of fractional anisotropy based on the tensor distribution Function Yang, G.-Z. et al. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009. Lecture Notes in Computer Science, vol. 5761, pp 845–852. Springer, Berlin-Heidelberg (2009)Google Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Fachbereich MathematikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations