Skip to main content
Log in

Shadow Limit Using Renormalization Group Method and Center Manifold Method

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study a shadow limit (the infinite diffusion coefficient-limit) of a system of ODEs coupled with a semilinear heat equation in a bounded domain with Neumann boundary conditions. In the literature, it was established formally that in the limit, the original semilinear heat equation reduces to an ODE involving the space averages of the solution to the semilinear heat equation and of the nonlinearity. It is coupled with the original system of ODEs for every space point x. We present derivation of the limit using the renormalization group (RG) and the center manifold approaches. The RG approach provides also further approximating expansion terms. The error estimate in the terms of the inverse of the diffusion coefficient is obtained for the finite time intervals. For the infinite times, the center manifolds for the starting problem and for its shadow limit approximation are compared and it is proved that their distance is of the order of the inverse of the diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bobrowski, A.: Singular perturbations involving fast diffusion. J. Math. Anal. Appl. 427, 1004–1026 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)

    Book  MATH  Google Scholar 

  3. Chen, L.Y., Goldenfeld, N., Oono, Y.: RenorMalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73, 1311–1315 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54, 376–394 (1996)

    Article  Google Scholar 

  5. Chiba, H.: C 1 approximation of vector fields based on the renormalization group method. SIAM J. Appl. Dyn. Syst. 7, 895–932 (2008)

    Article  MATH  Google Scholar 

  6. Chiba, H.: Extension and unification of singular perturbation methods for ODEs based on the renormalization group method. SIAM J. Appl. Dyn. Syst. 8, 1066–1115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiba, H.: Reduction of weakly nonlinear parabolic partial differential equations. J. Math. Phys. 54, 101501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  9. Lee DeVille, R.E., Harkin, A., Holzer, M., Josić, K., Kaper, T.: Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D 237, 1029–1052 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  MATH  Google Scholar 

  11. Hale, J.K., Sakamoto, K.: Shadow systems and attractors in reaction-diffusion equations. Appl. Anal. 32, 287–303 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. Springer Universitext (2011)

  13. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer (1981)

  14. Hock, S., Ng, Y., Hasenauer, J., Wittmann, D., Lutter, D., Trumbach, D., Wurst, W., Prakash, N., Theis, F.J.: Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation. BMC Syst. Biol. 7, 48 (2013)

    Article  Google Scholar 

  15. Keener, J.P.: Activators and inhibitors in pattern formation. Stud. Appl. Math. 59, 1–23 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klika, V., Baker, R.E., Headon, D., Gaffney, E.A.: The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organization. Bull. Math. Biol. 74, 935–957 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs Reprint, vol. 23. American Mathematical Society, Providence (1968)

  18. Lengyel, I., Epstein, I.R.: A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Natl. Acad. Sci. USA 89, 3977–3979 (1992)

    Article  MATH  Google Scholar 

  19. O’Malley, R.E. Jr.: Singular Perturbation Methods for Ordinary Differential Equations. Applied Mathematical Sciences, vol. 89. Springer, New York (1991)

  20. Marciniak-Czochra, A., Härting, S., Karch, G., Suzuki, K.: Dynamical spike solutions in a nonlocal model of pattern formation. arXiv:1307.6236 [math.AP] (2013)

  21. Marciniak-Czochra, A., Karch, G., Suzuki, K.: Unstable patterns in reaction-diffusion model of early carcinogenesis. J. Math. Pures Appl. 99, 509–543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marciniak-Czochra, A., Kimmel, M.: Modelling of early lung cancer progression: influence of growth factor production and cooperation between partially transformed cells. Math. Models Methods Appl. Sci. 17, 1693–1719 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marciniak-Czochra, A., Kimmel, M.: Reaction-diffusion model of early carcinogenesis: the effects of influx of mutated cells. Math. Model. Nat. Phenom. 3, 90–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Murray, J.D.: Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

  25. Moise, I., Ziane, M.: RenorMalization group method. Applications to partial differential equations. J. Dyn. Differ. Equ. 13, 275–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Temam, R., Wirosoetisno, D.: On the solutions of the renormalized equations at all orders. Adv. Differ. Equ. 8, 1005–1024 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Tikhonov, A.N., Vasil’eva, A.B., Sveshnikov, A.G.: Differential Equations. Translation of: Differentsial’nye Uravneniiya. Springer, Berlin (1985)

    Book  Google Scholar 

  28. Vasil’eva, A.B., Butuzov, V.F., Kalachev, L.V.: The boundary function method for singular perturbed problems. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  29. Ziane, M.: On a certain renormalization group method. J. Math. Phys. 41, 3290–3299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Andro Mikelić would like to express his thanks to The Heidelberg Graduates School HGS MathComp, IWR, Universität Heidelberg, for partially supporting his post-Romberg professorship research visits in 2014-2015. Anna Marciniak-Czochra acknowledges the support of the Emmy Noether Programme of the German Research Council (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andro Mikelić.

Additional information

This contribution is dedicated to Professor Willi Jäger on his 75th birthday. Multiscale analysis and biological applications are two subjects of focus in Willi’s research over his professional life.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marciniak-Czochra, A., Mikelić, A. Shadow Limit Using Renormalization Group Method and Center Manifold Method. Vietnam J. Math. 45, 103–125 (2017). https://doi.org/10.1007/s10013-016-0199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-016-0199-6

Keywords

Mathematics Subject Classification (2010)

Navigation